IDEAS home Printed from https://ideas.repec.org/a/baq/taprar/v3y2024i2p19-22.html
   My bibliography  Save this article

Development of fuzzified neural network for enterprise bankruptcy risk estimation

Author

Listed:
  • Artem Sinkovskyi

    (Cherkasy State Technological University)

  • Volodymyr Shulakov

    (Cherkasy State Technological University)

Abstract

The object of this study is the assessment of the level of enterprise bankruptcy risk. It is a critical component in assessing the financial condition of an enterprise, and also serves as an indicator that allows the management team to reduce potential risks and develop their own strategies to strengthen the financial condition of the enterprise. One of the most challenging aspects of bankruptcy forecasting is the complex financial situations of bankrupt companies. By accurately predicting the risk of bankruptcy, businesses can take preventive measures to mitigate financial difficulties and ensure long-term sustainability. Previous methods, such as Altman's Z-score, are not accurate enough, as presented in the study. The paper investigates a modern approach to bankruptcy prediction based on a neural network with complex neural elements, namely neural arithmetic logic units (NALUs) and a custom phasing layer. This layer can process complex raw numerical values, such as financial indicators relevant to the analysis of a company's bankruptcy. Compared to Altman's Z-score, the developed method demonstrates a better F1 score in bankruptcy classification (48 %). On the raw data, the neural network demonstrates an improvement in the F1 score by about 40 % compared to the classical multilayer perceptron (MLP) with linear layers and nonlinear activation functions. A modern replacement for ReLU called Mish was used, which achieves better generalization. It was also assumed that the addition of new neural elements, which provide the neural network with arithmetic capabilities, contributes to the performance of processing non-normalized input data. This work highlights the importance of using advanced neural network architectures to improve the accuracy and reliability of forecasting in financial risk assessment. Using the parameters presented in the study, managers of enterprises will be able to more accurately assess the risk of bankruptcy.

Suggested Citation

  • Artem Sinkovskyi & Volodymyr Shulakov, 2024. "Development of fuzzified neural network for enterprise bankruptcy risk estimation," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 3(2(77)), pages 19-22, June.
  • Handle: RePEc:baq:taprar:v:3:y:2024:i:2:p:19-22
    DOI: 10.15587/2706-5448.2024.306873
    as

    Download full text from publisher

    File URL: https://journals.uran.ua/tarp/article/download/306873/298399
    Download Restriction: no

    File URL: https://libkey.io/10.15587/2706-5448.2024.306873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    2. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    3. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    4. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artem Sinkovskyi & Volodymyr Shulakov, 2024. "Developing a neuro-flexible mechanism of bankruptcy risk estimation based on conditional parameters," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(2(78)), pages 20-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Premachandra, I.M. & Chen, Yao & Watson, John, 2011. "DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment," Omega, Elsevier, vol. 39(6), pages 620-626, December.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Methodological comparison between DEA (data envelopment analysis) and DEA-DA (discriminant analysis) from the perspective of bankruptcy assessment," European Journal of Operational Research, Elsevier, vol. 199(2), pages 561-575, December.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry," European Journal of Operational Research, Elsevier, vol. 199(2), pages 576-594, December.
    4. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    5. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    6. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    7. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    8. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    9. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    10. Madalina Ecaterina POPESCU & Marin ANDREICA & Ion-Petru POPESCU, 2017. "Decision Support Solution To Business Failure Prediction," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 11(1), pages 99-106, November.
    11. Marek Vochozka, 2010. "Vývoj metod komplexního hodnocení výkonnosti podniku [Development of Methods for Comprehensive Evaluation of Business Performance]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(5), pages 675-688.
    12. John W. Pacey & Toan M. Pham, 1990. "The Predictiveness of Bankruptcy Models: Methodological Problems and Evidence," Australian Journal of Management, Australian School of Business, vol. 15(2), pages 315-337, December.
    13. Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006. "Bayesian kernel based classification for financial distress detection," European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.
    14. ANDREICA Madalina Ecaterina & ANDREICA Mugurel Ionut & ANDREICA Marin, 2009. "Using financial ratios to identify Romanian distressed companies," Economia. Seria Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 12(1 Special), pages 46-55, July.
    15. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    16. Kurt M. Fanning & Kenneth O. Cogger, 1994. "A Comparative Analysis of Artificial Neural Networks Using Financial Distress Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(4), pages 241-252, December.
    17. Antonio David Somoza Lopez & Josep Vallverdu Calafell, 2003. "Una comparacion de la seleccion de los ratios contables en los modelos contable-financieros de prediccion de la insolvencia empresarial," Working Papers in Economics 94, Universitat de Barcelona. Espai de Recerca en Economia.
    18. Manjusha Senapathi & Saptarshi Ghosal, 2016. "Modelling Corporate Sector Distress in India," Working Papers id:11540, eSocialSciences.
    19. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    20. Paramonovs Sergejs & Ijevleva Ksenija, 2015. "The Role of Marketing Tools in the Improvement of Consumers Financial Literacy," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 40-45, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:baq:taprar:v:3:y:2024:i:2:p:19-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iryna Prudius (email available below). General contact details of provider: https://journals.uran.ua/tarp/issue/archive .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.