IDEAS home Printed from
   My bibliography  Save this article

Alternative Estimation Methods Of Nonlinear Demand Systems


  • Capps, Oral, Jr.


Several contemporary models of consumer demand comprise complete sets on nonlinear demand functions. Estimation methods should take into account parameter nonlinearity, cross-equation correlation, variance-covariance singularity of the disturbance terms, and various parameter restrictions. This paper presents a theoretical discussion and some empirical results using the maximum likelihood (ML) method and the iterative version of Zellner's seemingly unrelated regression (IZEF) method in the estimation of a nonlinear system of demand equations (the linear expenditure system) when the disturbance terms are both contemporaneously and serially correlated. On the basis of the evaluation of parameter estimates and their asymptotic standard errors as well as the cost of computation effort, the IZEF technique is preferred over the ML technique in this empirical problem.

Suggested Citation

  • Capps, Oral, Jr., 1983. "Alternative Estimation Methods Of Nonlinear Demand Systems," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 8(01), July.
  • Handle: RePEc:ags:wjagec:32484

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Beach, Charles M & MacKinnon, James G, 1979. "Maximum Likelihood Estimation of Singular Equation Systems with Autoregressive Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 459-464, June.
    2. Gallant, A. Ronald, 1975. "Seemingly unrelated nonlinear regressions," Journal of Econometrics, Elsevier, vol. 3(1), pages 35-50, February.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Demand and Price Analysis;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:wjagec:32484. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.