IDEAS home Printed from https://ideas.repec.org/a/ags/polgne/361239.html
   My bibliography  Save this article

Wykorzystanie PageRank oraz regresji jako dwuetapowej analizy sieci firm Nasdaq w czasie recesji. Wnioski z topologii minimalnego drzewa rozpinającego

Author

Listed:
  • Tomeczek, Artur F.
  • Napiórkowski, Tomasz M.

Abstract

The presence of focal firms driving entire stock markets has been proven by a series of existing studies that relied on the topological properties of minimum spanning trees. Historically, central firms have been identified primarily based on the degree centrality of nodes. This article proposes an alternative selection method, combining PageRank scores and modularity classes, which does away with the problem of ties in rankings when selecting a specific number of nodes. We use PageRank-based network analysis along with regression analysis to identify focal firms in the Nasdaq-100 index during the three most significant recent recessions in the United States. This approach validates and robustly supports our two-step method, showing that the combination of minimum spanning trees and our selection method explains over 90% of the Nasdaq-100 index’s dynamics. The analysis identified significant topological changes during the global financial crisis (with CSCO emerging as the star firm) and the COVID-19 pandemic (exhibiting strong market co-movements).

Suggested Citation

  • Tomeczek, Artur F. & Napiórkowski, Tomasz M., 2024. "Wykorzystanie PageRank oraz regresji jako dwuetapowej analizy sieci firm Nasdaq w czasie recesji. Wnioski z topologii minimalnego drzewa rozpinającego," Gospodarka Narodowa-The Polish Journal of Economics, Szkoła Główna Handlowa w Warszawie / SGH Warsaw School of Economics, vol. 2024(3), September.
  • Handle: RePEc:ags:polgne:361239
    DOI: 10.22004/ag.econ.361239
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/361239/files/Napi%C3%B3rkowski.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.361239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stijn Claessens & Neeltje van Horen, 2015. "The Impact of the Global Financial Crisis on Banking Globalization," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 63(4), pages 868-918, November.
    2. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    3. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    4. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    5. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    6. Kwon, Okyu & Yang, Jae-Suk, 2008. "Information flow between composite stock index and individual stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2851-2856.
    7. Pereira, Eder Johnson de Area Leão & Ferreira, Paulo Jorge Silveira & Silva, Marcus Fernandes da & Miranda, Jose Garcia Vivas & Pereira, H.B. B., 2019. "Multiscale network for 20 stock markets using DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    8. Dariusz Siudak, 2022. "The effect of self-organizing map architecture based on the value migration network centrality measures on stock return. Evidence from the US market," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-31, November.
    9. Renata Legenzova & Asta Gaigaliene & Otilija Jurakovaite, 2019. "Evaluation of the post-crisis EU banking network connectedness in the global context," Oeconomia Copernicana, Institute of Economic Research, vol. 10(1), pages 37-53, March.
    10. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    11. Giovanni Bonanno & Nicolas Vandewalle & Rosario N. Mantegna, 2000. "Taxonomy of Stock Market Indices," Papers cond-mat/0001268, arXiv.org, revised Aug 2000.
    12. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    13. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    14. Hui-Ju Tsai & Yangru Wu, 2022. "Changes in Corporate Social Responsibility and Stock Performance," Journal of Business Ethics, Springer, vol. 178(3), pages 735-755, July.
    15. Kanno, Masayasu, 2021. "Risk contagion of COVID-19 in Japanese firms: A network approach," Research in International Business and Finance, Elsevier, vol. 58(C).
    16. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    17. Okyu Kwon & Jae-Suk Yang, 2008. "Information flow between stock indices," Papers 0802.1747, arXiv.org.
    18. Bilal Ahmed Memon & Hongxing Yao & Rabia Tahir, 2020. "General election effect on the network topology of Pakistan’s stock market: network-based study of a political event," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    19. Stijn Claessens & Neeltje van Horen, 2015. "The Impact of the Global Financial Crisis on Banking Globalization," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 63(4), pages 868-918, November.
    20. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    21. Gilmore, Claire G. & Lucey, Brian M. & Boscia, Marian W., 2010. "Comovements in government bond markets: A minimum spanning tree analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4875-4886.
    22. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur F. Tomeczek & Tomasz M. Napiórkowski, 2024. "PageRank and Regression as a Two-Step Approach to Analysing a Network of Nasdaq Firms During a Recession: Insights from Minimum Spanning Tree Topology," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 56-69.
    2. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    5. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    6. Leonidas Sandoval Junior, 2013. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Business and Economics Working Papers 195, Unidade de Negocios e Economia, Insper.
    7. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    8. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    9. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    10. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    11. Hongxing Yao & Yanyu Lu & Bilal Ahmed Memon, 2019. "Impact of US-China Trade War on the Network Topology Structure of Chinese Stock Market," Journal of Asian Business Strategy, Asian Economic and Social Society, vol. 9(2), pages 235-250, December.
    12. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    13. Naylor, Michael J. & Rose, Lawrence C. & Moyle, Brendan J., 2007. "Topology of foreign exchange markets using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 199-208.
    14. Tanya Araujo & Francisco Louca, 2007. "The geometry of crashes. A measure of the dynamics of stock market crises," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 63-74.
    15. Tu, Chengyi, 2014. "Cointegration-based financial networks study in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 245-254.
    16. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    17. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    18. Lan, Qiujun & Li, Haojie & Mi, Xianhua & Zhang, Chunyu, 2025. "Optimizing investment strategies: Harnessing the power of K-line complex networks," International Review of Economics & Finance, Elsevier, vol. 99(C).
    19. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
    20. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:polgne:361239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/irsghpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.