IDEAS home Printed from https://ideas.repec.org/a/aes/infoec/v25y2021i2p29-39.html
   My bibliography  Save this article

A Classification Predictive Model to Analyze the Supply Chain Strategies

Author

Listed:
  • Elena PUICA

Abstract

Big Data Analytics (BDA) has the capacity to increase communications and better manage supply chain strategies. The main objective of this study developed, firstly was a systematic literature review, to understand how BDA has been investigated on supply chain strategies, which resources are handled by BDA and which Supply Chain Management strategies are positively affected by those technologies, and secondly, to apply a classification predictive model to foresee the level of implementation of innovative technologies in supply chain strategies. The applied predictive classification model helped to offer an understanding and to determine that in supply chain strategies there are innovative technologies implemented and their percentage of implementation will have an increasing value. This study, that is focused on BDA and supply chain strategies, offers new opportunities, and is adding value and operational excellence for existing supply chain practices. The adoption of big data technology in supply chain can create considerable value-added.

Suggested Citation

  • Elena PUICA, 2021. "A Classification Predictive Model to Analyze the Supply Chain Strategies," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 25(2), pages 29-39.
  • Handle: RePEc:aes:infoec:v:25:y:2021:i:2:p:29-39
    as

    Download full text from publisher

    File URL: http://revistaie.ase.ro/content/98/03%20-%20puica.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    2. Souza, Gilvan C., 2014. "Supply chain analytics," Business Horizons, Elsevier, vol. 57(5), pages 595-605.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    3. Leonardo de Assis Santos & Leonardo Marques, 2022. "Big data analytics for supply chain risk management: research opportunities at process crossroads," Post-Print hal-03766121, HAL.
    4. Ali, Abdul & Mancha, Ruben & Pachamanova, Dessislava, 2018. "Correcting analytics maturity myopia," Business Horizons, Elsevier, vol. 61(2), pages 211-219.
    5. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    6. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    7. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    8. Benjamin T. Hazen & Joseph B. Skipper & Christopher A. Boone & Raymond R. Hill, 2018. "Back in business: operations research in support of big data analytics for operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 201-211, November.
    9. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    10. Maestrini, Vieri & Luzzini, Davide & Caniato, Federico & Ronchi, Stefano, 2018. "Effects of monitoring and incentives on supplier performance: An agency theory perspective," International Journal of Production Economics, Elsevier, vol. 203(C), pages 322-332.
    11. Lee, Yerim & Hur, Jin, 2019. "A simultaneous approach implementing wind-powered electric vehicle charging stations for charging demand dispersion," Renewable Energy, Elsevier, vol. 144(C), pages 172-179.
    12. Mariz B. Arias & Sungwoo Bae, 2021. "Solar Photovoltaic Power Prediction Using Big Data Tools," Sustainability, MDPI, vol. 13(24), pages 1, December.
    13. McIver, Derrick & Lengnick-Hall, Mark L. & Lengnick-Hall, Cynthia A., 2018. "A strategic approach to workforce analytics: Integrating science and agility," Business Horizons, Elsevier, vol. 61(3), pages 397-407.
    14. Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
    15. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt, 2022. "Medium-Term Forecasts of Load Profiles in Polish Power System including E-Mobility Development," Energies, MDPI, vol. 15(15), pages 1-27, August.
    16. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    17. Marzio Barresi & Edoardo Ferri & Luigi Piegari, 2023. "An MV-Connected Ultra-Fast Charging Station Based on MMC and Dual Active Bridge with Multiple dc Buses," Energies, MDPI, vol. 16(9), pages 1-23, May.
    18. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
    19. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    20. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:infoec:v:25:y:2021:i:2:p:29-39. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Pocatilu (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.