IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v110y2020i4p1206-30.html

A Theory of Experimenters: Robustness, Randomization, and Balance

Author

Listed:
  • Abhijit V. Banerjee
  • Sylvain Chassang
  • Sergio Montero
  • Erik Snowberg

Abstract

This paper studies the problem of experiment design by an ambiguity-averse decision-maker who trades off subjective expected performance against robust performance guarantees. This framework accounts for real-world experimenters' preference for randomization. It also clarifies the circumstances in which randomization is optimal: when the available sample size is large and robustness is an important concern. We apply our model to shed light on the practice of rerandomization, used to improve balance across treatment and control groups. We show that rerandomization creates a trade-off between subjective performance and robust performance guarantees. However, robust performance guarantees diminish very slowly with the number of rerandomizations. This suggests that moderate levels of rerandomization usefully expand the set of acceptable compromises between subjective performance and robustness. Targeting a fixed quantile of balance is safer than targeting an absolute balance objective.

Suggested Citation

  • Abhijit V. Banerjee & Sylvain Chassang & Sergio Montero & Erik Snowberg, 2020. "A Theory of Experimenters: Robustness, Randomization, and Balance," American Economic Review, American Economic Association, vol. 110(4), pages 1206-1230, April.
  • Handle: RePEc:aea:aecrev:v:110:y:2020:i:4:p:1206-30
    DOI: 10.1257/aer.20171634
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20171634
    Download Restriction: no

    File URL: https://doi.org/10.3886/E115410V2
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20171634.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20171634.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/aer.20171634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Zambrano, 2024. "Inequality Sensitive Optimal Treatment Assignment," Papers 2409.14776, arXiv.org, revised Feb 2025.
    2. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    3. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    4. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024. "Inference on Winners," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
    5. Jos'e Luis Montiel Olea & Chen Qiu & Jorg Stoye, 2023. "Decision Theory for Treatment Choice Problems with Partial Identification," Papers 2312.17623, arXiv.org, revised Jun 2025.
    6. Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
    7. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    8. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    9. Takuya Ishihara, 2023. "Bandwidth selection for treatment choice with binary outcomes," The Japanese Economic Review, Springer, vol. 74(4), pages 539-549, October.
    10. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    11. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2025. "Loss aversion and the welfare ranking of policy interventions," Journal of Econometrics, Elsevier, vol. 252(PB).
    12. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    13. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    14. Charles F. Manski & Aleksey Tetenov, 2023. "Statistical decision theory respecting stochastic dominance," The Japanese Economic Review, Springer, vol. 74(4), pages 447-469, October.
    15. Abhijit Banerjee & Sylvain Chassang & Sergio Montero & Erik Snowberg, 2017. "A Theory of Experimenters," NBER Working Papers 23867, National Bureau of Economic Research, Inc.
    16. Takuya Ishihara & Daisuke Kurisu, 2022. "Shrinkage Methods for Treatment Choice," Papers 2210.17063, arXiv.org, revised Oct 2025.
    17. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    18. Aleksey Tetenov, 2016. "An economic theory of statistical testing," CeMMAP working papers 50/16, Institute for Fiscal Studies.
    19. Shosei Sakaguchi, 2025. "Estimation of optimal dynamic treatment assignment rules under policy constraints," Quantitative Economics, Econometric Society, vol. 16(3), pages 981-1022, July.
    20. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.

    More about this item

    JEL classification:

    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:110:y:2020:i:4:p:1206-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.