IDEAS home Printed from https://ideas.repec.org/r/eee/jcecon/v33y2005i2p401-420.html
   My bibliography  Save this item

Productivity growth in OECD countries: A comparison with Malmquist indices

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Epure, Mircea & Kerstens, Kristiaan & Prior, Diego, 2011. "Technology-based total factor productivity and benchmarking: New proposals and an application," Omega, Elsevier, vol. 39(6), pages 608-619, December.
  2. Yu, Yanni & Wu, Wenjie & Zhang, Tao & Liu, Yanchu, 2016. "Environmental catching-up, eco-innovation, and technological leadership in China's pilot ecological civilization zones," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 228-236.
  3. Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy & Marklund, Per-Olov & Zhou, Wenchao, 2012. "Productivity: Should We Include Bads?," CERE Working Papers 2012:13, CERE - the Center for Environmental and Resource Economics.
  4. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
  5. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
  6. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2013. "On the inconsistency of the Malmquist–Luenberger index," European Journal of Operational Research, Elsevier, vol. 229(3), pages 738-742.
  7. Mohsen Afsharian & Mohammadreza Alirezaee & Peter Reichling, 2012. "The master Malmquist index measurement using DEA-based weighted average efficiency," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 4(1), pages 21-42.
  8. Vu, Khuong & Hartley, Kris, 2022. "Effects of digital transformation on electricity sector growth and productivity: A study of thirteen industrialized economies," Utilities Policy, Elsevier, vol. 74(C).
  9. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
  10. Jin Guo & Hanqiao Yang, 2022. "CDMs’ effect on environmentally sensitive productivity: evidence from Chinese provinces," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 401-422, December.
  11. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
  12. Yang, Fuxia & Yang, Mian & Nie, Hualin, 2013. "Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations," Applied Energy, Elsevier, vol. 110(C), pages 82-89.
  13. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
  14. Duman, Yavuz Selman & Kasman, Adnan, 2018. "Environmental technical efficiency in EU member and candidate countries: A parametric hyperbolic distance function approach," Energy, Elsevier, vol. 147(C), pages 297-307.
  15. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
  16. Roberts Skapars & Sandra Jekabsone & Janis Priede & Irina Skribane, 2017. "Productivity and its Impact on the Competitiveness of Latvia," European Research Studies Journal, European Research Studies Journal, vol. 0(3A), pages 920-930.
  17. Hyoung Seok Lee & Yongrok Choi, 2019. "Environmental Performance Evaluation of the Korean Manufacturing Industry Based on Sequential DEA," Sustainability, MDPI, vol. 11(3), pages 1-14, February.
  18. Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.
  19. Baris K. Yörük & Osman Zaim, 2006. "The Kuznets curve and the effect of international regulations on environmental efficiency," Economics Bulletin, AccessEcon, vol. 17(1), pages 1-7.
  20. Ananda, Jayanath & Hampf, Benjamin, 2015. "Measuring environmentally sensitive productivity growth: An application to the urban water sector," Ecological Economics, Elsevier, vol. 116(C), pages 211-219.
  21. Harald Dyckhoff & Rainer Souren, 2023. "Are important phenomena of joint production still being neglected by economic theory? A review of recent literature," Journal of Business Economics, Springer, vol. 93(6), pages 1015-1053, August.
  22. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
  23. Lisann Krautzberger & Heike Wetzel, 2012. "Transport and CO 2 : Productivity Growth and Carbon Dioxide Emissions in the European Commercial Transport Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(3), pages 435-454, November.
  24. Martin Boďa & Mariana Považanová, 2020. "Productivity patterns in Europe: adaptation of the Malmquist index to measuring group performance and productivity change over time," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(4), pages 949-989, November.
  25. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang, 2017. "Worldwide carbon shadow prices during 1990–2011," Energy Policy, Elsevier, vol. 109(C), pages 288-296.
  26. Chiu, Ching-Ren & Liou, Je-Liang & Wu, Pei-Ing & Fang, Chen-Ling, 2012. "Decomposition of the environmental inefficiency of the meta-frontier with undesirable output," Energy Economics, Elsevier, vol. 34(5), pages 1392-1399.
  27. Jayanath Ananda & Nicholas Pawsey, 2019. "Benchmarking service quality in the urban water industry," Journal of Productivity Analysis, Springer, vol. 51(1), pages 55-72, February.
  28. Vivek Ghosal & Andreas Stephan & Jan F. Weiss, 2019. "Decentralized environmental regulations and plant‐level productivity," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 998-1011, September.
  29. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
  30. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
  31. Shaoyan Yang & Duodong Ding & Churen Sun, 2022. "Does Innovative City Policy Improve Green Total Factor Energy Efficiency? Evidence from China," Sustainability, MDPI, vol. 14(19), pages 1-30, October.
  32. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
  33. Keyun Zhang & Yi Yi & Wenbin Zhang, 2014. "Environmental total factor productivity and regional disparity in China," Letters in Spatial and Resource Sciences, Springer, vol. 7(1), pages 9-21, March.
  34. Yoruk, Baris, 2007. "Human Capital, Innovation, and Productivity Growth: Tales from Latin America and Caribbean," MPRA Paper 3667, University Library of Munich, Germany.
  35. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
  36. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
  37. Inácio Araúgo & Randall Jackson & Amir B. Ferreira Neto & Fernando Perobelli, 2018. "Environmental Costs of European Union Membership: A Structural Decomposition Analysis," Working Papers Working Paper 2018-04, Regional Research Institute, West Virginia University.
  38. Mahlberg, Bernhard & Sahoo, Biresh K., 2011. "Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application," International Journal of Production Economics, Elsevier, vol. 131(2), pages 721-726, June.
  39. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
  40. ChuangLin Fang & XingLiang Guan & ShaSha Lu & Min Zhou & Yu Deng, 2013. "Input–Output Efficiency of Urban Agglomerations in China: An Application of Data Envelopment Analysis (DEA)," Urban Studies, Urban Studies Journal Limited, vol. 50(13), pages 2766-2790, October.
  41. Sun, Huaping & Kporsu, Anthony Kwaku & Taghizadeh-Hesary, Farhad & Edziah, Bless Kofi, 2020. "Estimating environmental efficiency and convergence: 1980 to 2016," Energy, Elsevier, vol. 208(C).
  42. Oh, Donghyun & Heshmati, Almas, 2009. "A Sequential Malmquist-Luenberger Productivity Index," IZA Discussion Papers 4199, Institute of Labor Economics (IZA).
  43. Lindikaya W. Myeki & Nicolette Matthews & Yonas T. Bahta, 2023. "Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
  44. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  45. Yanrui Wu & Bing Wang, 2007. "Environmental Regulation and Productivity Growth: A Study of the APEC Economies," Economics Discussion / Working Papers 07-17, The University of Western Australia, Department of Economics.
  46. Rolf F�re & Shawna Grosskopf & Tommy Lundgren & Per-Olov Marklund & Wenchao Zhou, 2014. "Pollution-generating technologies and environmental efficiency," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 233-251, August.
  47. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
  48. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
  49. Eduard Nežinský & Elena Fifeková, 2014. "The V4: a Decade after the EU Entry," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 2(2), pages 31-46.
  50. De Santis R. & Jona Lasinio C., 2016. "Environmental Policies, Innovation and Productivity in the EU," Global Economy Journal, De Gruyter, vol. 16(4), pages 615-635, December.
  51. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.
  52. Amritpal Singh Dhillon & Hardik Vachharajani, 2020. "Productivity Analysis of Coal-fired Thermal Power Plants in India Using Malmquist Index Approach," Global Business Review, International Management Institute, vol. 21(6), pages 1338-1353, December.
  53. Béchir Ben Lahouel & Younes Ben Zaied & Guo-liang Yang & Maria-Giuseppina Bruna & Yaoyao Song, 2022. "A non-parametric decomposition of the environmental performance-income relationship: evidence from a non-linear model," Annals of Operations Research, Springer, vol. 313(1), pages 525-558, June.
  54. Theodore M. Mitrakos & Georgios Th Simigiannis & Panagiota G. Tzamourani, 2005. "Indebtedness of Greek households: evidence from a survey," Economic Bulletin, Bank of Greece, issue 25, pages 13-35, AUgust.
  55. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2020. "Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry:A Bayesian shrinkage dynamic analysis," Energy Policy, Elsevier, vol. 142(C).
  56. Chuku Chuku & Victor Ajayi, 2022. "Working Paper 363 - Growing Green: Enablers and Barriers for Africa," Working Paper Series 2489, African Development Bank.
  57. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
  58. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
  59. Manello, Alessandro, 2017. "Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany," European Journal of Operational Research, Elsevier, vol. 262(2), pages 733-743.
  60. Gubu Muga & Shougeng Hu & Zhilan Wang & Luyi Tong & Zongnan Hu & Hui Huang & Shijin Qu, 2023. "The Efficiency of Urban–Rural Integration in the Yangtze River Economic Belt and Its Optimization," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
  61. Deshan Li & Rongwei Wu, 2018. "A Dynamic Analysis of Green Productivity Growth for Cities in Xinjiang," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
  62. repec:ebl:ecbull:v:17:y:2006:i:1:p:1-7 is not listed on IDEAS
  63. Barıs Yoruk, 2007. "Negative externalities, productivity growth and the catching-up hypothesis," Applied Economics Letters, Taylor & Francis Journals, vol. 14(6), pages 429-434.
  64. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
  65. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
  66. Ghosal, Vivek & Stephan, Andreas & Weiss, Jan, 2014. "Decentralized Regulation, Environmental Efficiency and Productivity," Ratio Working Papers 229, The Ratio Institute.
  67. Víctor Giménez & Claudio Thieme & Diego Prior & Emili Tortosa-Ausina, 2017. "An international comparison of educational systems: a temporal analysis in presence of bad outputs," Journal of Productivity Analysis, Springer, vol. 47(1), pages 83-101, February.
  68. Dubrocard, Anne & Prombo, Michel, 2012. "Performance environnementale et mesure de la productivité," MPRA Paper 41456, University Library of Munich, Germany.
  69. Dubrocard, Anne & Prombo, Michel, 2012. "International comparison of Environmental performance," MPRA Paper 48072, University Library of Munich, Germany, revised 05 Jul 2013.
  70. Oh, Dong-hyun & Heshmati, Almas, 2010. "A sequential Malmquist-Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology," Energy Economics, Elsevier, vol. 32(6), pages 1345-1355, November.
  71. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
  72. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
  73. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.