IDEAS home Printed from https://ideas.repec.org/r/bes/jnlbes/v13y1995i4p459-65.html
   My bibliography  Save this item

A Dynamic Analysis of Interfuel Substitution in U.S. Industrial Energy Demand

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Brannlund, Runar & Lundgren, Tommy, 2004. "A dynamic analysis of interfuel substitution for Swedish heating plants," Energy Economics, Elsevier, vol. 26(6), pages 961-976, November.
  2. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
  3. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
  4. Ali Jadidzadeh and Apostolos Serletis, 2016. "Sectoral Interfuel Substitution in Canada: An Application of NQ Flexible Functional Forms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  5. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
  6. Zachlod-Jelec, Magdalena & Boratynski, Jakub, 2016. "How large and uncertain are costs of 2030 GHG emissions reduction target for the European countries? Sensitivity analysis in a global CGE model," MF Working Papers 26, Ministry of Finance in Poland.
  7. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
  8. Suh, Dong Hee, 2021. "Exploring the U.S. mining industry's demand system for production factors: Implications for economic sustainability," Resources Policy, Elsevier, vol. 74(C).
  9. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
  10. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
  11. Suh, Dong Hee & Moss, Charles B., 2014. "Dynamic Adjustment of Demand for Distiller's Grain: Implications for Feed and Livestock Markets," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162454, Southern Agricultural Economics Association.
  12. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
  13. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
  14. Ferreira, Paula & Soares, Isabel & Araujo, Madalena, 2005. "Liberalisation, consumption heterogeneity and the dynamics of energy prices," Energy Policy, Elsevier, vol. 33(17), pages 2244-2255, November.
  15. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
  16. Spierdijk, Laura & Shaffer, Sherrill & Considine, Tim, 2017. "How do banks adjust to changing input prices? A dynamic analysis of U.S. commercial banks before and after the crisis," Journal of Banking & Finance, Elsevier, vol. 85(C), pages 1-14.
  17. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
  18. Suho Bae, 2009. "The responses of manufacturing businesses to geographical differences in electricity prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(2), pages 453-472, June.
  19. Haitao Yin & Hui Zhou & Kai Zhu, 2016. "Long- and short-run elasticities of residential electricity consumption in China: a partial adjustment model with panel data," Applied Economics, Taylor & Francis Journals, vol. 48(28), pages 2587-2599, June.
  20. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.
  21. Adetutu, Morakinyo O., 2014. "Energy efficiency and capital-energy substitutability: Evidence from four OPEC countries," Applied Energy, Elsevier, vol. 119(C), pages 363-370.
  22. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
  23. Nicholas Lee & Hsiang-Jane Su & Ming-Chin Lin, 2018. "Electricity Consumption and Green Mortgage: New Insights into the Threshold Cointegration Relationship," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 39-46.
  24. Tsionas, Efthymios G. & Christopoulos, Dimitris K., 2003. "Cointegration modeling of interrelated factor demands: With an application to labor-import substitution in the European Union," Journal of Macroeconomics, Elsevier, vol. 25(4), pages 509-526, December.
  25. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
  26. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
  27. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
  28. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
  29. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
  30. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
  31. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
  32. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.
  33. Galetovic, Alexander & Muñoz, Cristián M., 2011. "Regulated electricity retailing in Chile," Energy Policy, Elsevier, vol. 39(10), pages 6453-6465, October.
  34. Serletis, Apostolos & Shahmoradi, Asghar, 2008. "Semi-nonparametric estimates of interfuel substitution in U.S. energy demand," Energy Economics, Elsevier, vol. 30(5), pages 2123-2133, September.
  35. Serletis, Apostolos & Xu, Libo, 2022. "Interfuel substitution: A copula approach," Journal of Commodity Markets, Elsevier, vol. 28(C).
  36. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
  37. Lin, Boqiang & Atsagli, Philip, 2017. "Energy consumption, inter-fuel substitution and economic growth in Nigeria," Energy, Elsevier, vol. 120(C), pages 675-685.
  38. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
  39. Arnberg, Soren & Bjorner, Thomas Bue, 2007. "Substitution between energy, capital and labour within industrial companies: A micro panel data analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 122-136, May.
  40. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.
  41. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
  42. Nurul Hossain, A.K.M. & Serletis, Apostolos, 2017. "A century of interfuel substitution," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 28-42.
  43. Magdalena Zachlod-Jelec & Jakub Boratyński, 2016. "How large and uncertain are costs of 2030 emission reduction target for the European countries? Sensitivity analysis in a global CGE model," EcoMod2016 9449, EcoMod.
  44. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
  45. Shahiduzzaman, M.D. & Alam, Khorshed, 2014. "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
  46. Timothy J. Considine & Edward J. M. Manderson, 2013. "The Cost of Solar-Centric Renewable Portfolio Standards," Economics Discussion Paper Series 1323, Economics, The University of Manchester.
  47. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
  48. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
  49. Dixon, Peter B. & Rimmer, Maureen T., 2009. "Simulating the U.S. recession," Conference papers 331862, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  50. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
  51. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
  52. He, Y.X. & Yang, L.F. & He, H.Y. & Luo, T. & Wang, Y.J., 2011. "Electricity demand price elasticity in China based on computable general equilibrium model analysis," Energy, Elsevier, vol. 36(2), pages 1115-1123.
  53. Dong Hee Suh & Charles B. Moss, 2016. "Dynamic interfeed substitution: implications for incorporating ethanol byproducts into feedlot rations," Applied Economics, Taylor & Francis Journals, vol. 48(20), pages 1893-1901, April.
  54. Urga, Giovanni, 1999. "An application of dynamic specifications of factor demand equations to interfuel substitution in US industrial energy demand," Economic Modelling, Elsevier, vol. 16(4), pages 503-513, December.
  55. Liu, Boying & Shumway, C. Richard & Yoder, Jonathan K., 2017. "Lifecycle economic analysis of biofuels: Accounting for economic substitution in policy assessment," Energy Economics, Elsevier, vol. 67(C), pages 146-158.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.