IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v72y2018icp22-30.html
   My bibliography  Save this article

Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model

Author

Listed:
  • Considine, Timothy J.

Abstract

Measuring substitution possibilities is crucial for estimating the costs and benefits of climate, trade, banking, and many other policy issues. This paper addresses two problems encountered when modeling substitution: spurious correlations arising from data with trends and violations of the law of demand. This paper shows how the dynamic linear logit model addresses these two problems. First, the model allows adjustment in quantities and, thereby, avoids spurious correlations arising from data with significant trends. Secondly, the linear nature of the substitution elasticities facilitates parameter restrictions to ensure that substitution estimates are consistent with the law of demand and the mathematical conditions consistent with cost minimizing behavior by producers. These features are illustrated by estimating the dynamic linear logit model for energy demand in the U.S. industrial sector. The empirical results demonstrate that the dynamic linear logit model is well suited for data with common trends and for ensuring robust and intuitively appealing estimates of demand elasticities and associated substitution possibilities.

Suggested Citation

  • Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
  • Handle: RePEc:eee:ecmode:v:72:y:2018:i:c:p:22-30
    DOI: 10.1016/j.econmod.2017.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999317309173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2017.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moschini, Giancarlo, 1998. "The semiflexible almost ideal demand system," European Economic Review, Elsevier, vol. 42(2), pages 349-364, February.
    2. Shangnan Shui & John C. Beghin & Michael Wohlgenant, 1993. "The Impact of Technical Change, Scale Effects, and Forward Ordering on U.S. Fiber Demands," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(3), pages 632-641.
    3. Brannlund, Runar & Lundgren, Tommy, 2004. "A dynamic analysis of interfuel substitution for Swedish heating plants," Energy Economics, Elsevier, vol. 26(6), pages 961-976, November.
    4. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    5. Hertel, Thomas & Hummels, David & Ivanic, Maros & Keeney, Roman, 2007. "How confident can we be of CGE-based assessments of Free Trade Agreements?," Economic Modelling, Elsevier, vol. 24(4), pages 611-635, July.
    6. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    7. Ronald Bewley & Trevor Young, 1987. "Applying Theil's Multinomial Extension of the Linear Logit Model to Meat Expenditure Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(1), pages 151-157.
    8. Elliott, Graham, 2000. "Estimating Restricted Cointegrating Vectors," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 91-99, January.
    9. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    10. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2015. "The sensitivity of climate-economy CGE models to energy-related elasticity parameters: Implications for climate policy design," Economic Modelling, Elsevier, vol. 51(C), pages 38-52.
    11. Anderson, Richard G & Thursby, Jerry G, 1986. "Confidence Intervals for Elasticity Estimators in Translog Models," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 647-656, November.
    12. Dumagan, Jesus C. & Mount, Timothy D., 1996. "Global properties of well-behaved demand systems: A generalized logit model specification," Economic Modelling, Elsevier, vol. 13(2), pages 235-256, April.
    13. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Moschini, Giancarlo & Moro, Daniele, 1994. "Autocorrelation specification in singular equation systems," Economics Letters, Elsevier, vol. 46(4), pages 303-309, December.
    15. Thompson, Peter & Taylor, Timothy G, 1995. "The Capital-Energy Substitutability Debate: A New Look," The Review of Economics and Statistics, MIT Press, vol. 77(3), pages 565-569, August.
    16. Considine, Timothy J, 1990. "Symmetry Constraints and Variable Returns to Scale in Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 347-353, July.
    17. Cheng Hsiao, 1997. "Cointegration and Dynamic Simultaneous Equations Model," Econometrica, Econometric Society, vol. 65(3), pages 647-670, May.
    18. Considine, Timothy J., 1989. "Separability, functional form and regulatory policy in models of interfuel substitution," Energy Economics, Elsevier, vol. 11(2), pages 82-94, April.
    19. Considine, Timothy J. & Larson, Donald F., 2006. "The environment as a factor of production," Journal of Environmental Economics and Management, Elsevier, vol. 52(3), pages 645-662, November.
    20. Moon, Hyungsik Roger & Schorfheide, Frank, 2002. "Minimum Distance Estimation Of Nonstationary Time Series Models," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1385-1407, December.
    21. Chavas, Jean-Paul & Segerson, Kathleen, 1986. "Singularity and Auotregressive Disturbances in Linear Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(2), pages 161-169, April.
    22. Treadway, Arthur B, 1971. "The Rational Multivariate Flexible Accelerator," Econometrica, Econometric Society, vol. 39(5), pages 845-855, September.
    23. Urga, Giovanni, 1999. "An application of dynamic specifications of factor demand equations to interfuel substitution in US industrial energy demand," Economic Modelling, Elsevier, vol. 16(4), pages 503-513, December.
    24. Karney, Daniel H., 2016. "General equilibrium models with Morishima elasticities of substitution in production," Economic Modelling, Elsevier, vol. 53(C), pages 266-277.
    25. Arthur Lewbel & Serena Ng, 2005. "Demand Systems with Nonstationary Prices," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 479-494, August.
    26. Timothy Tyrrell & Timothy Mount, 1982. "A Nonlinear Expenditure System Using a Linear Logit Specification," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(3), pages 539-546.
    27. Diewert, W. E. & Wales, T. J., 1988. "A normalized quadratic semiflexible functional form," Journal of Econometrics, Elsevier, vol. 37(3), pages 327-342, March.
    28. Arnberg, Soren & Bjorner, Thomas Bue, 2007. "Substitution between energy, capital and labour within industrial companies: A micro panel data analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 122-136, May.
    29. Considine, Timothy J & Mount, Timothy D, 1984. "The Use of Linear Logit Models for Dynamic Input Demand Systems," The Review of Economics and Statistics, MIT Press, vol. 66(3), pages 434-443, August.
    30. Jones, Clifton T, 1995. "A Dynamic Analysis of Interfuel Substitution in U.S. Industrial Energy Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 459-465, October.
    31. Fuss, Melvyn A., 1977. "The demand for energy in Canadian manufacturing : An example of the estimation of production structures with many inputs," Journal of Econometrics, Elsevier, vol. 5(1), pages 89-116, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spierdijk, Laura & Shaffer, Sherrill & Considine, Tim, 2017. "How do banks adjust to changing input prices? A dynamic analysis of U.S. commercial banks before and after the crisis," Journal of Banking & Finance, Elsevier, vol. 85(C), pages 1-14.
    2. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    3. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    4. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
    5. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Timothy J. Considine & Edward J. M. Manderson, 2013. "The Cost of Solar-Centric Renewable Portfolio Standards," Economics Discussion Paper Series 1323, Economics, The University of Manchester.
    7. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
    8. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    9. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
    10. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    11. Suh, Dong Hee, 2021. "Exploring the U.S. mining industry's demand system for production factors: Implications for economic sustainability," Resources Policy, Elsevier, vol. 74(C).
    12. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    13. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.
    14. Suh, Dong Hee & Moss, Charles B., 2014. "Dynamic Adjustment of Demand for Distiller's Grain: Implications for Feed and Livestock Markets," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162454, Southern Agricultural Economics Association.
    15. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    16. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    17. Brannlund, Runar & Lundgren, Tommy, 2004. "A dynamic analysis of interfuel substitution for Swedish heating plants," Energy Economics, Elsevier, vol. 26(6), pages 961-976, November.
    18. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
    19. Laura Spierdijk & Sherrill Shaffer & Tim Considine, 2016. "Adapting to changing input prices in response to the crisis: The case of US commercial banks," CAMA Working Papers 2016-15, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.

    More about this item

    Keywords

    Dynamic; Substitution; Concavity; Linear logit model;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:72:y:2018:i:c:p:22-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.