IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/13066.html
   My bibliography  Save this paper

Ups and downs: How economic growth affects policy interactions

Author

Listed:
  • Flues, Florens
  • Löschel, Andreas
  • Lutz, Benjamin Johannes
  • Schenker, Oliver

Abstract

Current climate and energy policy has to operate under an ex-ante unforeseen economic crisis. An obvious consequence is the collapse of prices for carbon emission allowances as, for example, seen in the European Union. However, this price collapse may be amplified by the interaction of a carbon emission cap and supplementary policy targets such as the minimum shares for renewables in the power sector. The static interaction between climate and renewable policies has been discussed extensively. This paper extends this debate by analysing how uncertain differences in medium to long-run growth rates affect the effciency and effectiveness of a policy portfolio containing an emission trading scheme and a target for a minimum renewable share. Making use of a simple partial equilibrium model we identify an asymmetric interaction of emissions trading and renewable quotas with respect to different growth rates of an economy. The results imply that unintended consequences of the policy interaction may be particularly severe and costly when economic growth is low and that carbon prices are more sensitive to changes in economic growth if they are applied in combination with renewable energy targets. Our main example for the policy interaction is the EU, yet our research also relates particularly well to the uncertainty of economic growth in fast growing emerging economies like China.

Suggested Citation

  • Flues, Florens & Löschel, Andreas & Lutz, Benjamin Johannes & Schenker, Oliver, 2013. "Ups and downs: How economic growth affects policy interactions," ZEW Discussion Papers 13-066, ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:13066
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/82627/1/768059348.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narayan, Paresh Kumar & Narayan, Seema & Smyth, Russell, 2011. "Energy consumption at business cycle horizons: The case of the United States," Energy Economics, Elsevier, vol. 33(2), pages 161-167, March.
    2. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    3. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    4. Samuel Fankhauser & Cameron Hepburn & Jisung Park, 2010. "Combining Multiple Climate Policy Instruments: How Not To Do It," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 209-225.
    5. Boeters, Stefan & Koornneef, Joris, 2011. "Supply of renewable energy sources and the cost of EU climate policy," Energy Economics, Elsevier, vol. 33(5), pages 1024-1034, September.
    6. Christoph Böhringer & Knut Rosendahl, 2010. "Green promotes the dirtiest: on the interaction between black and green quotas in energy markets," Journal of Regulatory Economics, Springer, vol. 37(3), pages 316-325, June.
    7. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    8. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    9. Garth Heutel, 2012. "How Should Environmental Policy Respond to Business Cycles? Optimal Policy under Persistent Productivity Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 244-264, April.
    10. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    11. Baran Doda, 2012. "Evidence on CO2 emissions and business cycles," GRI Working Papers 78, Grantham Research Institute on Climate Change and the Environment.
    12. Lawrence H. Goulder, 2013. "Markets for Pollution Allowances: What Are the (New) Lessons?," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 87-102, Winter.
    13. Garth Heutel, 2012. "How Should Environmental Policy Respond to Business Cycles? Optimal Policy under Persistent Productivity Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 244-264, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flues, Florens & Löschel, Andreas & Lutz, Benjamin Johannes & Schenker, Oliver, 2014. "Designing an EU energy and climate policy portfolio for 2030: Implications of overlapping regulation under different levels of electricity demand," Energy Policy, Elsevier, vol. 75(C), pages 91-99.
    2. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    3. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    4. Michael Hübler & Oliver Schenker & Carolyn Fischer, 2015. "Second-Best Analysis of European Energy Policy: Is One Bird in the Hand Worth Two in the Bush?," Working Papers 2015.106, Fondazione Eni Enrico Mattei.
    5. Baran Doda, 2013. "Emissions-GDP Relationship in Times of Growth and Decline," GRI Working Papers 116, Grantham Research Institute on Climate Change and the Environment.
    6. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    7. Böhringer, Christoph & Keller, Andreas & Bortolamedi, Markus & Rahmeier Seyffarth, Anelise, 2016. "Good things do not always come in threes: On the excess cost of overlapping regulation in EU climate policy," Energy Policy, Elsevier, vol. 94(C), pages 502-508.
    8. Amedeo Argentiero, Tarek Atalla, Simona Bigerna, Silvia Micheli, and Paolo Polinori, 2017. "Comparing Renewable Energy Policies in EU-15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    9. Khan, Hashmat & Metaxoglou, Konstantinos & Knittel, Christopher R. & Papineau, Maya, 2019. "Carbon emissions and business cycles," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 1-19.
    10. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    11. Doda, Baran, 2014. "Evidence on business cycles and CO2 emissions," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 214-227.
    12. Fischer, Carolyn & Hübler, Michael & Schenker, Oliver, 2021. "More birds than stones – A framework for second-best energy and climate policy adjustments," Journal of Public Economics, Elsevier, vol. 203(C).
    13. Marie Byskov Lindberg, 2019. "The EU Emissions Trading System and Renewable Energy Policies: Friends or Foes in the European Policy Mix?," Politics and Governance, Cogitatio Press, vol. 7(1), pages 105-123.
    14. Eric Jondeau & Gregory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition Risk," Swiss Finance Institute Research Paper Series 22-45, Swiss Finance Institute.
    15. Ren Wang & Yuxiang Bian & Han Gao & Jie Hou, 2023. "Optimal Environmental Policy for Heterogeneous Governments in China," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    16. Patrick Gruning, 2022. "Fiscal, Environmental, and Bank Regulation Policies in a Small Open Economy for the Green Transition," Working Papers 2022/06, Latvijas Banka.
    17. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    18. Coenen, Günter & Lozej, Matija & Priftis, Romanos, 2023. "Macroeconomic Effects of Carbon Transition Policies: An Assessment Based on the ECB’s New Area-Wide Model with a Disaggregated Energy Sector," Research Technical Papers 8/RT/23, Central Bank of Ireland.
    19. Huang, Bihong & Punzi, Maria Teresa & Wu, Yu, 2022. "Environmental regulation and financial stability: Evidence from Chinese manufacturing firms," Journal of Banking & Finance, Elsevier, vol. 136(C).
    20. Barbara Annicchiarico & Fabio Di Dio, 2014. "Ramsey Monetary Policy and GHG Emission Control," CEIS Research Paper 330, Tor Vergata University, CEIS, revised 24 Sep 2014.

    More about this item

    Keywords

    EU Climate Policy; Growth Uncertainty; Overlapping Regulation;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:13066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.