Advanced Search
MyIDEAS: Login to save this paper or follow this series

On the Measurement of the Predictive Success of Learning Theories in Repeated Games

Contents:

Author Info

  • Atanasios Mitropoulos

    (Otto-von-Guericke-University Magdeburg)

Abstract

The growing literature on learning in games has produced various results on the predictive success of learning theories. These results, however, were based on various methods of comparison. The present paper uses experimental data on a set of four games in order to check on the robustness of rankings among learning rules across measures. We characterise measures along three dimensions: (i) the scoring rule, (ii) the method of comparison, and (iii) the definition of observations and apply all thus defined measures to 12 learning rules. The results show that rankings are indeed sensitive to the measure used. Furthermore, we point at deficiencies of certain measures that have been applied in the past and suggest the use of simulated data when learning rules are supposed to predict realisations of random variables.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/exp/papers/0110/0110001.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Experimental with number 0110001.

as in new window
Length: 30 pages
Date of creation: 18 Oct 2001
Date of revision:
Handle: RePEc:wpa:wuwpex:0110001

Note: Type of Document - Acrobat PDF; prepared on IBM PC - MS-Word; to print on HP A4 size; pages: 30; figures: included
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: learning; experimental games; predictive success; forecasts;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Selten, Reinhard & Joachim Buchta, 1994. "Experimental Sealed Bid First Price Auctions with Directly Observed Bid Functions," Discussion Paper Serie B 270, University of Bonn, Germany.
  2. T. Borgers & R. Sarin, 2010. "Learning Through Reinforcement and Replicator Dynamics," Levine's Working Paper Archive 380, David K. Levine.
  3. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
  4. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2001. "Effects of parameter estimation on prediction densities: a bootstrap approach," International Journal of Forecasting, Elsevier, vol. 17(1), pages 83-103.
  5. Cross, John G, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, MIT Press, vol. 87(2), pages 239-66, May.
  6. Selten, Reinhard, 1996. "Axiomatic Characterization of the Quadratic Scoring Rule," Discussion Paper Serie B 390, University of Bonn, Germany.
  7. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-81, September.
  8. Selten, Reinhard & Stoecker, Rolf, 1986. "End behavior in sequences of finite Prisoner's Dilemma supergames A learning theory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 47-70, March.
  9. repec:kap:expeco:v:1:y:1998:i:1:p:43-62 is not listed on IDEAS
  10. Erev, Ido & Bereby-Meyer, Yoella & Roth, Alvin E., 1999. "The effect of adding a constant to all payoffs: experimental investigation, and implications for reinforcement learning models," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 111-128, May.
  11. Atanasios Mitropoulos, 2001. "Learning Under Little Information: An Experiment on Mutual Fate Control," Game Theory and Information 0110003, EconWPA.
  12. Chen, Yan & Khoroshilov, Yuri, 2003. "Learning under limited information," Games and Economic Behavior, Elsevier, vol. 44(1), pages 1-25, July.
  13. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
  14. Atanasios Mitropoulos, 2001. "Little Information, Efficiency, and Learning - An Experimental Study," Game Theory and Information 0110002, EconWPA.
  15. Daniel Friedman, 1983. "Effective Scoring Rules for Probabilistic Forecasts," Management Science, INFORMS, vol. 29(4), pages 447-454, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Spiliopoulos, Leonidas, 2008. "Humans versus computer algorithms in repeated mixed strategy games," MPRA Paper 6672, University Library of Munich, Germany.
  2. Spiliopoulos, Leonidas, 2008. "Do repeated game players detect patterns in opponents? Revisiting the Nyarko & Schotter belief elicitation experiment," MPRA Paper 6666, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpex:0110001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.