Advanced Search
MyIDEAS: Login to save this paper or follow this series

On heuristic and linear models of judgment: Mapping the demand for knowledge

Contents:

Author Info

  • Robin Hogarth

    ()

  • Natalia Karelaia

Abstract

Research on judgment and decision making presents a confusing picture of human abilities. For example, much research has emphasized the dysfunctional aspects of judgmental heuristics, and yet, other findings suggest that these can be highly effective. A further line of research has modeled judgment as resulting from “as if” linear models. This paper illuminates the distinctions in these approaches by providing a common analytical framework based on the central theoretical premise that understanding human performance requires specifying how characteristics of the decision rules people use interact with the demands of the tasks they face. Our work synthesizes the analytical tools of “lens model” research with novel methodology developed to specify the effectiveness of heuristics in different environments and allows direct comparisons between the different approaches. We illustrate with both theoretical analyses and simulations. We further link our results to the empirical literature by a meta-analysis of lens model studies and estimate both human and heuristic performance in the same tasks. Our results highlight the trade-off between linear models and heuristics. Whereas the former are cognitively demanding, the latter are simple to use. However, they require knowledge – and thus “maps” – of when and which heuristic to employ.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.econ.upf.edu/docs/papers/downloads/974.pdf
File Function: Whole Paper
Download Restriction: no

Bibliographic Info

Paper provided by Department of Economics and Business, Universitat Pompeu Fabra in its series Economics Working Papers with number 974.

as in new window
Length:
Date of creation: Jun 2006
Date of revision:
Handle: RePEc:upf:upfgen:974

Contact details of provider:
Web page: http://www.econ.upf.edu/

Related research

Keywords: Decision making; heuristics; linear models; lens model; judgmental biases;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Manel Baucells & Juan A. Carrasco & Robin Hogarth, 2005. "Cumulative dominance and heuristic performance in binary multi-attribute choice," Economics Working Papers 895, Department of Economics and Business, Universitat Pompeu Fabra.
  2. Rothstein, Howard G., 1986. "The effects of time pressure on judgment in multiple cue probability learning," Organizational Behavior and Human Decision Processes, Elsevier, vol. 37(1), pages 83-92, February.
  3. Robin Hogarth & Natalia Karelaia, 2004. "Simple models for multi-attribute choice with many alternatives: When it does and does not pay to face tradeoffs with binary attributes," Economics Working Papers 739, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2005.
  4. Robin Hogarth & Natalia Karelaia, 2004. "Ignoring information in binary choice with continuous variables: When is less 'more'?," Economics Working Papers 742, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2004.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. David Leiser & Dov-Ron Schatzberg, 2008. "On the complexity of traffic judges' decisions," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 3(8), pages 667-678, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:974. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.