Advanced Search
MyIDEAS: Login to save this paper or follow this series

Agent-based simulation of power exchange with heterogeneous production companies

Contents:

Author Info

  • Silvano Cincotti

    ()
    (University of Genoa DIBE)

  • Eric Guerci

Abstract

Since early nineties, worldwide production and distribution of electricity has been characterized by a progressive liberalization. The state-owned monopolistic production of electricity has been substituted by organized power exchanges (PEs). PEs are markets which aggregate the effective supply and demand of electricity. Usually spot-price market are Day Ahead Market (DAM) and are requested in order to provide an indication for the hourly unit commitment. This first session of the complex daily energy market collects and orders all the offers, determining the market price by matching the cumulative demand and supply curves for every hour of the day after according to a merit order rule. Subsequent market sessions (also online) operate in order to guarantee the feasibility and the security of this plan. The electric market is usually characterized by a reduced number of competitors, thus oligopolistic scenario may arise. Understanding how electricity prices depend on oligopolistic behavior of suppliers and on production costs has become a very important issue. Several restructuring designs for the electric power industry have been proposed. Main goal is to increase the overall market efficiency, trying to study, to develop and to apply different market mechanisms. Auction design is the standard domain for commodity markets. However, properties of different auction mechanism must be studied and determined correctly before their appliance. Generally speaking, different approaches have been proposed in the literature. Game theory analysis has provided an extremely useful methodology to study and derive properties of economic "games", such as auctions. Within this context, an interesting computational approach, for studying market inefficiencies, is the theory of learning in games. This methodology is useful in the context of infinitely repeated games. This paper investigates the nature of the clearing mechanism comparing two different methods, i.e., discriminatory and uniform auctions. The theoretical framework used to perform the analysis is the theory of learning in games. We consider an inelastic demand faced by sellers which use learning algorithms to understand proper strategies for increasing their profits. We model the auction mechanism in two different duopolistic scenario, i.e., a low demand situation, where one seller can clear all the demand, and a high demand condition, where both sellers are requested. Moreover, heterogeneity in the linear cost function is considered. Consistent results are achieved with two different learning algorithms

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repec.org/sce2005/up.6571.1107194148.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 334.

as in new window
Length:
Date of creation: 11 Nov 2005
Date of revision:
Handle: RePEc:sce:scecf5:334

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords: Agent-based simulation; power-exchange market; market power; reinforcement learning; electricity production costs;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Drew Fudenberg & David K. Levine, 1998. "Learning in Games," Levine's Working Paper Archive 2222, David K. Levine.
  2. Denton, Michael J. & Rassenti, Stephen J. & Smith, Vernon L., 2001. "Spot market mechanism design and competitivity issues in electric power," Journal of Economic Behavior & Organization, Elsevier, vol. 44(4), pages 435-453, April.
  3. Klemperer, Paul, 1999. " Auction Theory: A Guide to the Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 13(3), pages 227-86, July.
  4. von der Fehr, Nils-Henrik Morch & Harbord, David, 1993. "Spot Market Competition in the UK Electricity Industry," Economic Journal, Royal Economic Society, vol. 103(418), pages 531-46, May.
  5. Nicolaisen, James & Petrov, Valentin & Tesfatsion, Leigh S., 2001. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Staff General Research Papers 2050, Iowa State University, Department of Economics.
  6. A. Roth & I. Er’ev, 2010. "Learning in Extensive Form Games: Experimental Data and Simple Dynamic Models in the Intermediate Run," Levine's Working Paper Archive 387, David K. Levine.
  7. Guerci, E. & Ivaldi, S. & Pastore, S. & Cincotti, S., 2005. "Modeling and implementation of an artificial electricity market using agent-based technology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 69-76.
  8. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-81, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:334. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.