Advanced Search
MyIDEAS: Login

Optimal Technological Portfolios for Climate-Change Policy under Uncertainty: A Computable General Equilibrium Approach

Contents:

Author Info

  • David F. Bradford
  • Seung-Rae Kim
  • Klaus Keller

Abstract

When exploring solutions to long-term environmental problems such as climate change, it is crucial to understand how the rates and directions of technological change may interact with environmental policies in the presence of uncertainty. This paper analyzes optimal technological portfolios for global carbon emissions reductions in an integrated assessment model of the coupled social-natural system. The model used here is a probabilistic, two-technology extension of Nordhaus" earlier model (Nordhaus and Boyer, 2000) by incorporating endogenous technological choice between conventional and carbon-free technologies. Taking into account the possible competitions among the technological options, we address the issues of optimal timing, costs and burden-sharing of optimal carbon mitigation strategies in the inherently uncertain world. We perform various analyses related to the major uncertainties about natural, socioeconomic and technological parameters, and investigate the effects of uncertainties resolution, risks and alternative political preferences. The results show that analyses ignoring uncertainty could lead to inefficient and biased technology-policy recommendations for the future.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repec.org/sce2004/up.9494.1077738068.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2004 with number 140.

as in new window
Length:
Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:sce:scecf4:140

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords: Integrated assessment modeling; Global Warming; Uncertainty; Endogenous technological portfolios;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. William D. Nordhaus & David Popp, 1996. "What is the Value of Scientific Knowledge? An Application to Global Warming Using the PRICE Model," Cowles Foundation Discussion Papers 1117, Cowles Foundation for Research in Economics, Yale University.
  2. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
  3. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Seung-Rae Kim, 2005. "Uncertainty, Learning, and Optimal Technological Portfolios: A Dynamic General Equilibrium Approach to Climate Change," Computing in Economics and Finance 2005 54, Society for Computational Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:140. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.