Advanced Search
MyIDEAS: Login

Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models

Contents:

Author Info

  • K. W. DE BOCK
  • D. VAN DEN POEL

    ()

Abstract

To build a successful customer churn prediction model, a classification algorithm should be chosen that fulfills two requirements: strong classification performance and a high level of model interpretability. In recent literature, ensemble classifiers have demonstrated superior performance in a multitude of applications and data mining contests. However, due to an increased complexity they result in models that are often difficult to interpret. In this study, GAMensPlus, an ensemble classifier based upon generalized additive models (GAMs), in which both performance and interpretability are reconciled, is presented and evaluated in a context of churn prediction modeling. The recently proposed GAMens, based upon Bagging, the Random Subspace Method and semiparametric GAMs as constituent classifiers, is extended to include two instruments for model interpretability: generalized feature importance scores, and bootstrap confidence bands for smoothing splines. In an experimental comparison on data sets of six real-life churn prediction projects, the competitive performance of the proposed algorithm over a set of well-known benchmark algorithms is demonstrated in terms of four evaluation metrics. Further, the ability of the technique to deliver valuable insight into the drivers of customer churn is illustrated in a case study on data from a European bank. Firstly, it is shown how the generalized feature importance scores allow the analyst to identify the importances of churn predictors in function of the criterion that is used to measure the quality of the model predictions. Secondly, the ability of GAMensPlus to identify nonlinear relationships between predictors and churn probabilities is demonstrated.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.feb.ugent.be/nl/Ondz/wp/Papers/wp_12_805.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Ghent University, Faculty of Economics and Business Administration in its series Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium with number 12/805.

as in new window
Length: 27 pages
Date of creation: Aug 2012
Date of revision:
Handle: RePEc:rug:rugwps:12/805

Contact details of provider:
Postal: Hoveniersberg 4, B-9000 Gent
Phone: ++ 32 (0) 9 264 34 61
Fax: ++ 32 (0) 9 264 35 92
Web page: http://www.ugent.be/eb
More information through EDIRC

Related research

Keywords: Database marketing; customer churn prediction; ensemble classification; generalized additive models (GAMs); GAMens; model interpretability;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
  2. Setiono, Rudy & Baesens, Bart & Mues, Christophe, 2009. "A note on knowledge discovery using neural networks and its application to credit card screening," European Journal of Operational Research, Elsevier, vol. 192(1), pages 326-332, January.
  3. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
  4. De Bock, Koen W & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Working Papers 2010/02, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
  5. Buckinx, Wouter & Van den Poel, Dirk, 2005. "Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting," European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
  6. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
  7. Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
  8. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
  9. K. Coussement & D. Van Den Poel, 2006. "Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/412, Ghent University, Faculty of Economics and Business Administration.
  10. Glady, Nicolas & Baesens, Bart & Croux, Christophe, 2009. "Modeling churn using customer lifetime value," European Journal of Operational Research, Elsevier, vol. 197(1), pages 402-411, August.
  11. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
  12. K. Coussement & D. Van Den Poel, 2007. "Improving Customer Complaint Management by Automatic Email Classification Using Linguistic Style Features as Predictors," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/481, Ghent University, Faculty of Economics and Business Administration.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:12/805. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nathalie Verhaeghe).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.