IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i2p635-651.html
   My bibliography  Save this article

Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning

Author

Listed:
  • Chou, Ping
  • Chuang, Howard Hao-Chun
  • Chou, Yen-Chun
  • Liang, Ting-Peng

Abstract

Predicting customer repurchase propensity/frequency has received broad research interests from marketing, operations research, statistics, and computer science. In the field of marketing, Buy till You Die (BTYD) models are perhaps the most representative techniques for customer repurchase prediction. Those probabilistic models are parsimonious and typically involve only recency and frequency of customer activities. Contrary to BTYD models, a distinctly different class of predictive models for customer repurchase is machine learning. This class of models include a wide variety of computational and statistical learning algorithms. Unlike BTYD models built on low-dimensional inputs and behavioral assumptions, machine learning is more data-driven and excels at fitting predictive models to a large array of features from customer transactions. Using a large online retailing data, we empirically assess the prediction performance of BTYD modeling and machine learning. More importantly, we investigate how the two approaches can complement each other for repurchase prediction. We use the BG/BB model given the discrete and non-contractual problem setting and incorporate BG/BB estimates into high-dimensional Lasso regression. In addition to showing significant improvement over BG/BB and Lasso without BG/BB, the integrated Lasso-BG/BB provides interpretability and identifies BG/BB predictions as the most influential feature among ∼100 predictors. The lately developed CART-artificial neural networks exhibit similar patterns. Robustness checks further show the proposed Lasso-BG/BB outperforms two sophisticated recurrent neural networks, validating the complementarity of machine learning and BTYD modeling. We conclude by articulating how our interdisciplinary integration of the two modeling paradigms contributes to the theory and practice of predictive analytics.

Suggested Citation

  • Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:635-651
    DOI: 10.1016/j.ejor.2021.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yen-Chun Chou & Howard Hao-Chun Chuang, 2018. "A predictive investigation of first-time customer retention in online reservation services," Service Business, Springer;Pan-Pacific Business Association, vol. 12(4), pages 685-699, December.
    2. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    3. Yao Zhang & Eric T. Bradlow & Dylan S. Small, 2015. "Predicting Customer Value Using Clumpiness: From RFM to RFMC," Marketing Science, INFORMS, vol. 34(2), pages 195-208, March.
    4. Buckinx, Wouter & Van den Poel, Dirk, 2005. "Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting," European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
    5. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    6. K.W. de Bock & D. van den Poel, 2012. "Reconciling performance and interpretability in customer churn prediction modeling using ensemble learning based on generalized additive models," Post-Print hal-00800148, HAL.
    7. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
    8. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    9. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    10. Martínez, Andrés & Schmuck, Claudia & Pereverzyev, Sergiy & Pirker, Clemens & Haltmeier, Markus, 2020. "A machine learning framework for customer purchase prediction in the non-contractual setting," European Journal of Operational Research, Elsevier, vol. 281(3), pages 588-596.
    11. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    12. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    13. van Oest, Rutger & Knox, George, 2011. "Extending the BG/NBD: A simple model of purchases and complaints," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 30-37.
    14. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    15. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    16. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    17. K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
    18. Jahn, Malte, 2020. "Artificial neural network regression models in a panel setting: Predicting economic growth," Economic Modelling, Elsevier, vol. 91(C), pages 148-154.
    19. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    20. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    21. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2014. "Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data," Marketing Science, INFORMS, vol. 33(2), pages 188-205, March.
    22. Shi, Ruixia & Chen, Hongyu & Sethi, Suresh P., 2019. "A generalized count model on customers' purchases in O2O market," International Journal of Production Economics, Elsevier, vol. 215(C), pages 121-130.
    23. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    24. Holtrop, Niels & Wieringa, Jaap E. & Gijsenberg, Maarten J. & Verhoef, Peter C., 2017. "No future without the past? Predicting churn in the face of customer privacy," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 154-172.
    25. V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
    26. Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
    27. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    28. Ryan Dew & Asim Ansari, 2018. "Bayesian Nonparametric Customer Base Analysis with Model-Based Visualizations," Marketing Science, INFORMS, vol. 37(2), pages 216-235, March.
    29. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    30. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    31. Arun Gopalakrishnan & Eric T. Bradlow & Peter S. Fader, 2017. "A Cross-Cohort Changepoint Model for Customer-Base Analysis," Marketing Science, INFORMS, vol. 36(2), pages 195-213, March.
    32. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    33. Chakraborty, Tanujit & Chakraborty, Ashis Kumar & Murthy, C.A., 2019. "A nonparametric ensemble binary classifier and its statistical properties," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 16-23.
    34. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    2. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    3. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
    4. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    5. Patrick Bachmann & Markus Meierer & Jeffrey Näf, 2021. "The Role of Time-Varying Contextual Factors in Latent Attrition Models for Customer Base Analysis," Marketing Science, INFORMS, vol. 40(4), pages 783-809, July.
    6. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    7. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    8. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    9. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    10. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    11. Tianyuan Zhang & Sérgio Moro & Ricardo F. Ramos, 2022. "A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation," Future Internet, MDPI, vol. 14(3), pages 1-19, March.
    12. Clemente-Císcar, M. & San Matías, S. & Giner-Bosch, V., 2014. "A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings," European Journal of Operational Research, Elsevier, vol. 239(1), pages 276-285.
    13. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    14. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    15. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    16. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    17. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    18. Ascarza, & Neslin, & Netzer, & Lemmens, Aurélie & Anderson, Zachery & Fader, Peter S. & Gupta, S. & Hardie, B.G.S. & Libai, Barak & Neal, David & Provost, Foster, 2018. "In pursuit of enhanced customer retention management : Review, key issues, and future directions," Other publications TiSEM 28a90d28-6daf-42f1-bd8e-e, Tilburg University, School of Economics and Management.
    19. Holtrop, Niels & Wieringa, Jaap E., 2023. "Timing customer reactivation initiatives," International Journal of Research in Marketing, Elsevier, vol. 40(3), pages 570-589.
    20. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    21. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:635-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.