Advanced Search
MyIDEAS: Login to save this paper or follow this series

Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques

Contents:

Author Info

  • B. LARIVIÈRE
  • D. VAN DEN POEL

    ()

Abstract

In an era of strong customer relationship management (CRM) emphasis, firms strive to build valuable relationships with their existing customer base. In this study we attempt to better understand three important measures of customer outcome: next buy, partial defection and customers’ profitability evolution. By means of random forests techniques we investigate a broad set of explanatory variables, including past customer behavior, observed customer heterogeneity and some typical variables related to intermediaries. We analyze a real-life sample of 100,000 customers taken from the data warehouse of a large European financial services company. Two types of random forests techniques are employed to analyze the data: random forests are used for binary classification, whereas regression forests are applied for the models with linear dependent variables. Our research findings demonstrate that both random forests techniques provide better fit for the estimation and validation sample compared to ordinary linear regression and logistic regression models. Furthermore, we find evidence that the same set of variables have a different impact on buying versus defection versus profitability behavior. Our findings suggest that past customer behavior is more important to generate repeat purchasing and favorable profitability evolutions, while the intermediary’s role has a greater impact on the customers’ defection proneness. Finally, our results demonstrate the benefits of analyzing different customer outcome variables simultaneously, since an extended investigation of the next buy - partial defection - customer profitability triad indicates that one cannot fully understand a particular outcome without understanding the other related behavioral outcome variables.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.feb.ugent.be/nl/Ondz/wp/Papers/wp_04_282.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Ghent University, Faculty of Economics and Business Administration in its series Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium with number 04/282.

as in new window
Length: 35 pages
Date of creation: Dec 2004
Date of revision:
Handle: RePEc:rug:rugwps:04/282

Contact details of provider:
Postal: Hoveniersberg 4, B-9000 Gent
Phone: ++ 32 (0) 9 264 34 61
Fax: ++ 32 (0) 9 264 35 92
Web page: http://www.ugent.be/eb
More information through EDIRC

Related research

Keywords: Data mining; Customer relationship management; Customer retention and profitability; Random forests and regression forests.;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
  2. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
  3. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
  4. W. Buckinx & D. Van Den Poel, 2003. "Customer Base Analysis: Partial Defection of Behaviorally-Loyal Clients in a Non-Contractual FMCG Retail Setting," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/178, Ghent University, Faculty of Economics and Business Administration.
  5. Baesens, Bart & Verstraeten, Geert & Van den Poel, Dirk & Egmont-Petersen, Michael & Van Kenhove, Patrick & Vanthienen, Jan, 2004. "Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers," European Journal of Operational Research, Elsevier, vol. 156(2), pages 508-523, July.
  6. Hemant Ishwaran & Eugene H. Blackstone & Claire E. Pothier & Michael S. Lauer, 2004. "Relative Risk Forests for Exercise Heart Rate Recovery as a Predictor of Mortality," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 591-600, January.
  7. Athanassopoulos, Antreas D., 2000. "Customer Satisfaction Cues To Support Market Segmentation and Explain Switching Behavior," Journal of Business Research, Elsevier, vol. 47(3), pages 191-207, March.
  8. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. K. Coussement & D. Van Den Poel, 2006. "Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/412, Ghent University, Faculty of Economics and Business Administration.
  2. K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.
  3. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
  4. V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
  5. D. F. Benoit & D. Van Den Poel, 2012. "Improving Customer Retention In Financial Services Using Kinship Network Information," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/786, Ghent University, Faculty of Economics and Business Administration.
  6. J. Burez & D. Van Den Poel, 2005. "CRM at a Pay-TV Company: Using Analytical Models to Reduce Customer Attrition by Targeted Marketing for Subscription Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/348, Ghent University, Faculty of Economics and Business Administration.
  7. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2010. "Alternative methods of predicting competitive events: An application in horserace betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 518-536, July.
  8. J. Burez & D. Van Den Poel, 2008. "Handling class imbalance in customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/517, Ghent University, Faculty of Economics and Business Administration.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:04/282. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nathalie Verhaeghe).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.