IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2023_010.html
   My bibliography  Save this paper

A Critical Evaluation of the 2022 Greenhouse Gas Mitigation Quota in Germany from an Environmental Economics and Policy Perspective

Author

Listed:
  • Liepold, Constanze

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Fabianek, Paul

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Madlener, Reinhard

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract

This study aims at identifying the strengths and weaknesses of GHG Quota Trading as an alternative to allowance trading and carbon taxes. Information was gathered from the websites and publications of the responsible authorities and relevant legal texts. Moreover, literature on comparable environmental policy instruments was analyzed based on predefined criteria. Assumptions were made to create models in order to assess cost effectiveness, Pareto-efficiency, and dynamic incentive effects. The results show that the GHG Quota Trading only partially meets the basic criteria of environmental effectiveness, cost effectiveness, and Pareto-efficiency, and has further weaknesses regarding legitimacy and practical feasibility. In order to reduce GHG emissions from fossil fuels as efficiently as possible, a key policy priority should therefore be to adapt the GHG Quota Trading and to combine it systematically with other environmental economics policies such as a carbon tax.

Suggested Citation

  • Liepold, Constanze & Fabianek, Paul & Madlener, Reinhard, 2023. "A Critical Evaluation of the 2022 Greenhouse Gas Mitigation Quota in Germany from an Environmental Economics and Policy Perspective," FCN Working Papers 10/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2023_010
    as

    Download full text from publisher

    File URL: https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaacdxhemv
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenn, Alan & Azevedo, Inês & Michalek, Jeremy Joseph, 2019. "Alternative-Fuel-Vehicle Policy Interactions Increase U.S. Greenhouse Gas Emissions," OSF Preprints n69tp, Center for Open Science.
    2. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2015. "Some Inconvenient Truths about Climate Change Policy: The Distributional Impacts of Transportation Policies," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1052-1069, December.
    3. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.
    4. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    5. Nentjes, Andries & de Vries, Frans P. & Wiersma, Doede, 2007. "Technology-forcing through environmental regulation," European Journal of Political Economy, Elsevier, vol. 23(4), pages 903-916, December.
    6. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    7. Zhang, Duan & Chen, Yihsu & Tanaka, Makoto, 2018. "On the effectiveness of tradable performance-based standards," Energy Economics, Elsevier, vol. 74(C), pages 456-469.
    8. Frank Jotzo & Valerie Karplus & Michael Grubb & Andreas Löschel & Karsten Neuhoff & Libo Wu & Fei Teng, 2018. "China’s emissions trading takes steps towards big ambitions," Nature Climate Change, Nature, vol. 8(4), pages 265-267, April.
    9. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    10. Greene, David L. & Greenwald, Judith M. & Ciez, Rebecca E., 2020. "U.S. fuel economy and greenhouse gas standards: What have they achieved and what have we learned?," Energy Policy, Elsevier, vol. 146(C).
    11. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
    12. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schöpper, Yannick & Digmayer, Claas & Bartusch, Raphaela & Ebrahim, Ola & Hermens, Sarah & Nejabat, Razieh & Steireif, Niklas & Wendorff, Jannik & Jakobs, Eva-Maria & Lohrberg, Frank & Madlener, Reinh, 2023. "Developing a Niche Readiness Level Model to Assess Socio-Economic Maturity: The Case of DC Technologies in the Transition to Flexible Electrical Networks," FCN Working Papers 11/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    2. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    3. Rhodes, Ekaterina & Scott, William A. & Jaccard, Mark, 2021. "Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis," Energy Policy, Elsevier, vol. 156(C).
    4. Goulder, Lawrence H. & Long, Xianling & Lu, Jieyi & Morgenstern, Richard D., 2022. "China's unconventional nationwide CO2 emissions trading system: Cost-effectiveness and distributional impacts," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    5. Huseynov, Samir & Palma, Marco A., 2018. "Does California’s LCFS Reduce CO2 Emissions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274200, Agricultural and Applied Economics Association.
    6. Jussila Hammes , Johanna, 2014. "A biofuel mandate and a low carbon fuel standard with ‘double counting’," Working papers in Transport Economics 2014:19, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    7. Derek Lemoine, 2017. "Escape from Third-Best: Rating Emissions for Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 789-821, August.
    8. Bergquist, Ann-Kristin & Söderholm, Kristina & Kinneryd, Hanna & Lindmark, Magnus & Söderholm, Patrik, 2013. "Command-and-control revisited: Environmental compliance and technological change in Swedish industry 1970–1990," Ecological Economics, Elsevier, vol. 85(C), pages 6-19.
    9. Mbéa Bell & Sylvain Dessy, 2017. "Market Power and Instrument Choice in Climate Policy," Cahiers de recherche 1704, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    10. Guo, Shuocheng & Kontou, Eleftheria, 2021. "Disparities and equity issues in electric vehicles rebate allocation," Energy Policy, Elsevier, vol. 154(C).
    11. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    12. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    13. Plevin, Richard J. & Delucchi, Mark A. & O’Hare, Michael, 2017. "Fuel carbon intensity standards may not mitigate climate change," Energy Policy, Elsevier, vol. 105(C), pages 93-97.
    14. Greene, David L. & Greenwald, Judith M. & Ciez, Rebecca E., 2020. "U.S. fuel economy and greenhouse gas standards: What have they achieved and what have we learned?," Energy Policy, Elsevier, vol. 146(C).
    15. Barla, Philippe & Proost, Stef, 2012. "Energy efficiency policy in a non-cooperative world," Energy Economics, Elsevier, vol. 34(6), pages 2209-2215.
    16. Bergquist, Ann-Kristin & Söderholm, Kristina & Kinneryd, Hanna & Lindmark, Magnus & Söderholm, Patrick, 2012. "Command-and-Control Revisited: Environmental Compliance and Innovation in Swedish Industry 1970-1990," CERE Working Papers 2012:2, CERE - the Center for Environmental and Resource Economics.
    17. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    18. Becker, Jonathon M., 2023. "Tradable performance standards in a dynamic context," Resource and Energy Economics, Elsevier, vol. 73(C).
    19. Bahamonde-Birke, Francisco J., 2020. "Who will bell the cat? On the environmental and sustainability risks of electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 79-81.
    20. Gabriel E Lade & C-Y Cynthia Lin Lawell & Aaron Smith, 2018. "Designing Climate Policy: Lessons from the Renewable Fuel Standard and the Blend Wall," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 585-599.

    More about this item

    Keywords

    GHG Quota; environmental policy instruments; fuel market; Germany;
    All these keywords.

    JEL classification:

    • F64 - International Economics - - Economic Impacts of Globalization - - - Environment
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2023_010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.