Advanced Search
MyIDEAS: Login

On the number of blocks required to access the coalition structure core

Contents:

Author Info

  • Béal, Sylvain
  • Rémila, Eric
  • Solal, Philippe

Abstract

This article shows that, for any transferable utility game in coalitional form with nonempty coalition structure core, the number of steps required to switch from a payoff configuration out of the coalition structure core to a payoff configuration in the coalition structure core is less than or equal to (n*n+4n)/4, where n is the cardinality of the player set. This number considerably improves the upper bound found so far by Koczy and Lauwers (2004).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/29755/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 29755.

as in new window
Length:
Date of creation: 22 Mar 2011
Date of revision:
Handle: RePEc:pra:mprapa:29755

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: coalition structure core; excess function; payoff configuration; outsider independent domination.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. László Á. Kóczy & Luc Lauwers, 2002. "The Coalition Structure Core is Accessible," Center for Economic Studies - Discussion papers ces0219, Katholieke Universiteit Leuven, Centrum voor Economische Studiën.
  2. Koczy, Laszlo A., 2006. "The core can be accessed with a bounded number of blocks," Journal of Mathematical Economics, Elsevier, vol. 43(1), pages 56-64, December.
  3. Sengupta, Abhijit & Sengupta, Kunal, 1994. "Viable Proposals," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(2), pages 347-59, May.
  4. Yang, Yi-You, 2010. "On the accessibility of the core," Games and Economic Behavior, Elsevier, vol. 69(1), pages 194-199, May.
  5. Greenberg, Joseph, 1994. "Coalition structures," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 37, pages 1305-1337 Elsevier.
  6. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "On the number of blocks required to access the core," MPRA Paper 26578, University Library of Munich, Germany.
  7. Sengupta, Abhijit & Sengupta, Kunal, 1996. "A Property of the Core," Games and Economic Behavior, Elsevier, vol. 12(2), pages 266-273, February.
  8. Robert Aumann, 2010. "Some non-superadditive games, and their Shapley values, in the Talmud," International Journal of Game Theory, Springer, vol. 39(1), pages 3-10, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Peter Biro & Matthijs Bomhoff & Walter Kern & Petr A. Golovach & Daniel Paulusma, 2012. "Solutions for the Stable Roommates Problem with Payments," IEHAS Discussion Papers 1211, Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:29755. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.