Advanced Search
MyIDEAS: Login to save this paper or follow this series

Stability of nonlinear AR-GARCH models

Contents:

Author Info

  • Mika Meitz
  • Pentti Saikkonen

Abstract

This paper studies the stability of nonlinear autoregressive models with conditionality heteroskedastic errors. We consider a nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a nonlinear first order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. Conditions under which the model is stable in the sense that its Markov chain representation is geometrically ergodic are provided. This implies the existence of an initial distribution such that the process is strictly stationary and β-mixing. Conditions under which the stationary distribution has finite moments are also given. The results cover several nonlinear specifications recently proposed for both the conditional mean and conditional variance, and only require mild moment conditions.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.economics.ox.ac.uk/materials/working_papers/paper328.pdf
Download Restriction: no

Bibliographic Info

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 328.

as in new window
Length:
Date of creation: 01 May 2007
Date of revision:
Handle: RePEc:oxf:wpaper:328

Contact details of provider:
Postal: Manor Rd. Building, Oxford, OX1 3UQ
Email:
Web page: http://www.economics.ox.ac.uk/
More information through EDIRC

Related research

Keywords: Nonlinear Autoregression; Generalized Autoregressive Conditional Heteroskedasticity; Nonlinear Time Series Models; Geometric Ergodicity; Mixing; Strict Stationarity; Existence of Moments; Markov Models;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Meitz, Mika & Saikkonen, Pentti, 2006. "Stability of nonlinear AR-GARCH models," Working Paper Series in Economics and Finance 632, Stockholm School of Economics.
  2. Mika Meitz & Pentti Saikkonen, 2007. "Ergodicity, mixing, and existence of moments of a class of Markov models with applications to GARCH and ACD models," Economics Series Working Papers 327, University of Oxford, Department of Economics.
  3. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
  4. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  5. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
  6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  7. An, H. Z. & Chen, S. G., 1997. "A note on the ergodicity of non-linear autoregressive model," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 365-372, June.
  8. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  9. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
  10. van Dijk, Dick & Teräsvirta, Timo & Franses, Philip Hans, 2000. "Smooth Transition Autoregressive Models - A Survey of Recent Developments," Working Paper Series in Economics and Finance 380, Stockholm School of Economics, revised 17 Jan 2001.
  11. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
  12. Shiqing Ling & Michael McAleer, 2001. "Asymptotic Theory for a Vector ARMA-GARCH Model," ISER Discussion Paper 0549, Institute of Social and Economic Research, Osaka University.
  13. Bhattacharya, Rabi & Lee, Chanho, 1995. "On geometric ergodicity of nonlinear autoregressive models," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 311-315, March.
  14. Saikkonen, Pentti, 2005. "Stability results for nonlinear error correction models," Journal of Econometrics, Elsevier, vol. 127(1), pages 69-81, July.
  15. Cline, Daren B. H. & Pu, Huay-min H., 1998. "Verifying irreducibility and continuity of a nonlinear time series," Statistics & Probability Letters, Elsevier, vol. 40(2), pages 139-148, September.
  16. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
  17. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
  18. Lee, Chanho, 1998. "Asymptotics of a class of pth-order nonlinear autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 40(2), pages 171-177, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Meitz, Mika & Saikkonen, Pentti, 2006. "Stability of nonlinear AR-GARCH models," Working Paper Series in Economics and Finance 632, Stockholm School of Economics.
  2. Mika Meitz & Pentti Saikkonen, 2010. "Parameter estimation in nonlinear AR–GARCH models," Koç University-TUSIAD Economic Research Forum Working Papers 1002, Koc University-TUSIAD Economic Research Forum.
  3. Meitz, Mika & Saikkonen, Pentti, 2010. "A note on the geometric ergodicity of a nonlinear AR-ARCH model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 631-638, April.
  4. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
  5. Jiti Gao & Maxwell King, 2011. "A New Test in Parametric Linear Models against Nonparametric Autoregressive Errors," Monash Econometrics and Business Statistics Working Papers 20/11, Monash University, Department of Econometrics and Business Statistics.
  6. Chou, Ray Yeutien & Cai, Yijie, 2009. "Range-based multivariate volatility model with double smooth transition in conditional correlation," Global Finance Journal, Elsevier, vol. 20(2), pages 137-152.
  7. Emma M. Iglesias & Oliver Linton, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," Economics Working Papers we094726, Universidad Carlos III, Departamento de Economía.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:328. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Caroline Wise).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.