Advanced Search
MyIDEAS: Login to save this paper or follow this series

Estimation of tail thickness parameters from GJR-GARCH models

Contents:

Author Info

  • Emma M. Iglesias

    ()

  • Oliver Linton

    ()

Abstract

We propose a method of estimating the Pareto tail thickness parameter of the unconditional distribution of a financial time series by exploiting the implications of a GJR-GARCH volatility model. The method is based on some recent work on the extremes of GARCH-type processes and extends the method proposed by Berkes, Horváth and Kokoszka (2003). We show that the estimator of tail thickness is consistent and converges at rate ?T to a normal distribution (where T is the sample size), provided the model for conditional variance is correctly specified as a GJR-GARCH. This is much faster than the convergence rate of the Hill estimator, since that procedure only uses a vanishing fraction of the sample. We also develop new specification tests based on this method and propose new alternative estimates of unconditional value at risk. We show in Monte Carlo simulations the advantages of our procedure in finite samples; and finally an application concludes the paper

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://e-archivo.uc3m.es/bitstream/10016/4919/1/09-47-26-1.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universidad Carlos III, Departamento de Economía in its series Economics Working Papers with number we094726.

as in new window
Length:
Date of creation: Jun 2009
Date of revision:
Handle: RePEc:cte:werepe:we094726

Contact details of provider:
Postal: C./ Madrid, 126, 28903 Getafe (Madrid)
Phone: +34-91 6249594
Fax: +34-91 6249329
Email:
Web page: http://www.eco.uc3m.es
More information through EDIRC

Related research

Keywords: Pareto tail thickness parameter; GARCH-type models; Value-at-Risk; Extreme value theory; Heavy tails;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  2. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  3. Joris Pinkse & Margaret E. Slade & Craig Brett, 2002. "Spatial Price Competition: A Semiparametric Approach," Econometrica, Econometric Society, vol. 70(3), pages 1111-1153, May.
  4. Niklas Wagner & Terry A. Marsh, 2004. "Measuring Tail Thickness under GARCH and an Application to Extreme Exchange Rate Changes," Econometrics 0401008, EconWPA.
  5. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function is not Smooth," STICERD - Econometrics Paper Series /2003/450, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  6. Jon DANIELSSON & Casper G. DE VRIES, 2000. "Value-at-Risk and Extreme Returns," Annales d'Economie et de Statistique, ENSAE, issue 60, pages 239-270.
  7. Shiqing Ling & Michael McAleer, 2001. "Asymptotic Theory for a Vector ARMA-GARCH Model," ISER Discussion Paper 0549, Institute of Social and Economic Research, Osaka University.
  8. Enno Mammen & Oliver Linton, 2004. "Estimating Semiparametric ARCH Models by Kernel Smoothing Methods," FMG Discussion Papers dp511, Financial Markets Group.
  9. Einmahl, J. & Dekkers, A. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Open Access publications from Tilburg University urn:nbn:nl:ui:12-125712, Tilburg University.
  10. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  11. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
  12. Meitz, Mika & Saikkonen, Pentti, 2006. "Stability of nonlinear AR-GARCH models," Working Paper Series in Economics and Finance 632, Stockholm School of Economics.
  13. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  14. Fan, Yanqin & Ullah, Aman, 1999. "Asymptotic Normality of a Combined Regression Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 191-240, November.
  15. Markowitz, Harry M., 1990. "Foundations of Portfolio Theory," Nobel Prize in Economics documents 1990-1, Nobel Prize Committee.
  16. Slade, Margaret E, 1986. "Exogeneity Tests of Market Boundaries Applied to Petroleum Products," Journal of Industrial Economics, Wiley Blackwell, vol. 34(3), pages 291-303, March.
  17. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-71, November.
  18. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-16, April.
  19. Dennis Jansen & Casper de Vries, 1988. "On the frequency of large stock returns: putting booms and busts into perspective," Working Papers 1989-006, Federal Reserve Bank of St. Louis.
  20. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  21. Groenendijk, Patrick A. & Lucas, Andre & de Vries, Casper G., 1995. "A note on the relationship between GARCH and symmetric stable processes," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 253-264, September.
  22. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
  23. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  24. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
  25. Hols, Martien C A B & de Vries, Casper G, 1991. "The Limiting Distribution of Extremal Exchange Rate Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(3), pages 287-302, July-Sept.
  26. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
  27. Hill, Jonathan B., 2010. "On Tail Index Estimation For Dependent, Heterogeneous Data," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1398-1436, October.
  28. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
  29. Berkes, Istv n & Horv th, Lajos & Kokoszka, Piotr, 2003. "Estimation Of The Maximal Moment Exponent Of A Garch(1,1) Sequence," Econometric Theory, Cambridge University Press, vol. 19(04), pages 565-586, August.
  30. Xavier Gabaix & Rustam Ibragimov, 2007. "Rank-1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents," NBER Technical Working Papers 0342, National Bureau of Economic Research, Inc.
  31. Theis Lange & Anders Rahbek & S�ren Tolver Jensen, 2011. "Estimation and Asymptotic Inference in the AR-ARCH Model," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 129-153.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Beran, Jan & Schell, Dieter, 2012. "On robust tail index estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3430-3443.
  2. Stavros Degiannakis & Christos Floros & Alexandra Livada, 2012. "Evaluating value-at-risk models before and after the financial crisis of 2008: International evidence," Managerial Finance, Emerald Group Publishing, vol. 38(3), pages 436-452, March.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we094726. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.