Advanced Search
MyIDEAS: Login to save this paper or follow this series

On Tail Index Estimation for Dependent, Heterogenous Data

Contents:

Author Info

  • Jonathan B. Hill

    (Florida International University)

Abstract

In this paper we analyze the asymptotic properties of the popular distribution tail index estimator by B. Hill (1975) for possibly heavy- tailed, heterogenous, dependent processes. We prove the Hill estimator is weakly consistent for processes with extremes that form mixingale sequences, and asymptotically normal for processes with extremes that are near-epoch-dependent on the extremes of a mixing process. Our limit theory covers infinitely many ARFIMA and FIGARCH processes, stochastic recurrence equations, and simple bilinear processes. Moreover, we develop a simple non-parametric kernel estimator of the asymptotic variance of the Hill estimator, and prove consistency for extremal-NED processes.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/em/papers/0505/0505005.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Econometrics with number 0505005.

as in new window
Length: 23 pages
Date of creation: 20 May 2005
Date of revision: 27 May 2005
Handle: RePEc:wpa:wuwpem:0505005

Note: Type of Document - pdf; pages: 23
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: Hill estimator; regular variation; infinite variance; near epoch dependence; mixingale; kernel estimator; tail array sum.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Akgiray, Vedat & Booth, G Geoffrey, 1988. "The Stable-Law Model of Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 51-57, January.
  2. Caner, Mehmet, 1998. "Tests for cointegration with infinite variance errors," Journal of Econometrics, Elsevier, vol. 86(1), pages 155-175, June.
  3. Prasad Bidarkota & J Huston Mcculloch, 2004. "Testing for persistence in stock returns with GARCH-stable shocks," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 256-265.
  4. repec:cup:etheor:v:13:y:1997:i:3:p:353-67 is not listed on IDEAS
  5. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
  6. Prasad V. Bidarkota & J. Huston McCulloch, . "Optimal Univariate Inflation Forecasting with Symmetric Stable Shocks," Computing in Economics and Finance 1997 116, Society for Computational Economics.
  7. Davidson, James, 1992. "A Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes," Econometric Theory, Cambridge University Press, vol. 8(03), pages 313-329, September.
  8. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(03), pages 353-367, June.
  9. Davidson, James, 1993. "The Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes: The Asymptotically Degenerate Case," Econometric Theory, Cambridge University Press, vol. 9(03), pages 402-412, June.
  10. Davidson, James, 1993. "An L1-convergence theorem for heterogeneous mixingale arrays with trending moments," Statistics & Probability Letters, Elsevier, vol. 16(4), pages 301-304, March.
  11. B. N. Cheng & S. T. Rachev, 1995. "Multivariate Stable Futures Prices," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 133-153.
  12. Chan, Ngai Hang & Tran, Lanh Tat, 1989. "On the First-Order Autoregressive Process with Infinite Variance," Econometric Theory, Cambridge University Press, vol. 5(03), pages 354-362, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "Long Memory and Tail dependence in Trading Volume and Volatility," CREATES Research Papers 2009-30, School of Economics and Management, University of Aarhus.
  2. Hill, Jonathan B. & Shneyerov, Artyom, 2013. "Are there common values in first-price auctions? A tail-index nonparametric test," Journal of Econometrics, Elsevier, vol. 174(2), pages 144-164.
  3. Ilić, Ivana, 2012. "On tail index estimation using a sample with missing observations," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 949-958.
  4. Emma M. Iglesias & Oliver Linton, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," Economics Working Papers we094726, Universidad Carlos III, Departamento de Economía.
  5. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
  6. Giovanni Caggiano & Efrem Castelnuovo, 2008. "Long Memory and Non-Linearities in International Inflation," "Marco Fanno" Working Papers 0076, Dipartimento di Scienze Economiche "Marco Fanno".
  7. Jonathan Hill, 2006. "On Functional Central Limit Theorems for Dependent, Heterogeneous Tail Arrays with Applications to Tail Index and Tail Dependence Estimators," Working Papers 0607, Florida International University, Department of Economics.
  8. Bryan Kelly & Hao Jiang, 2013. "Tail Risk and Asset Prices," NBER Working Papers 19375, National Bureau of Economic Research, Inc.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0505005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.