Advanced Search
MyIDEAS: Login to save this paper or follow this series

Interaction Sheaves on Continuous Domains

Contents:

Author Info

  • J. Abdou

    (University Paris 1)

  • Hans Keiding

    (Department of Economics, University of Copenhagen)

Abstract

We introduce a description of the power structure which is inherent in a strategic game form using the concept of an interaction sheaf. The latter assigns to each open set of outcomes a set of interaction arrays, specifying the changes that coalitions can make if outcome belongs to this open set. The interaction sheaf generalizes the notion of effectivity functions which has been widely used in implementation theory, taking into consideration that changes in outcome may be sustained not only by single coalitions but possibly by several coalitions, depending on the underlying strategy choices. Also, it with not necessarily finite sets of outcomes, generalizing the results on solvability of game forms obtained in the finite case in Abdou and Keiding (2003).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.econ.ku.dk/english/research/publications/wp/2008/0812.pdf/
Download Restriction: no

Bibliographic Info

Paper provided by University of Copenhagen. Department of Economics in its series Discussion Papers with number 08-1.

as in new window
Length: 20 pages
Date of creation: Apr 2008
Date of revision:
Handle: RePEc:kud:kuiedp:0812

Contact details of provider:
Postal: Øster Farimagsgade 5, Building 26, DK-1353 Copenhagen K., Denmark
Phone: (+45) 35 32 30 10
Fax: +45 35 32 30 00
Email:
Web page: http://www.econ.ku.dk
More information through EDIRC

Related research

Keywords: Nash equilibrium; strong equilibrium; solvability; effectivity; acyclicity;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Moulin, Hervé & Peleg, B., 1982. "Cores of effectivity functions and implementation theory," Economics Papers from University Paris Dauphine 123456789/13220, Paris Dauphine University.
  2. Abdou, Joseph & Keiding, Hans, 2003. "On necessary and sufficient conditions for solvability of game forms," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 243-260, December.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:0812. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Hoffmann).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.