IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00633578.html

Interaction Sheaves on Continuous Domains

Author

Listed:
  • Joseph M. Abdou

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Hans Keiding

    (UCPH - University of Copenhagen = Københavns Universitet)

Abstract

We introduce a description of the power structure which is inherent in a strategic gameform using the concept of an interaction sheaf. The latter assigns to each open set of outcomes a set of interaction arrays, specifying the changes that coalitions can make if outcome belongs to this open set. The interaction sheaf generalizes the notion of effectivity functions which has been widely used in implementation theory, taking into consideration that changes in outcome may be sustained not only by single coalitions but possibly by several coalitions, depending on the underlying strategy choices. Also, it allows us to consider gameforms with not necessarily finite sets of outcomes, generalizing the results on solvability of game forms obtained in the finite case in Abdou and Keiding [Abdou, J., Keiding, H., 2003. On necessary and sufficient conditions for solvability of game forms. Mathematical Social Sciences 46, 243-260].

Suggested Citation

  • Joseph M. Abdou & Hans Keiding, 2009. "Interaction Sheaves on Continuous Domains," Post-Print halshs-00633578, HAL.
  • Handle: RePEc:hal:journl:halshs-00633578
    DOI: 10.1016/j.jmateco.2009.05.005
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00633578v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00633578v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jmateco.2009.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00633578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.