Advanced Search
MyIDEAS: Login

Properties of Dual Reduction

Contents:

Author Info

  • Yannick Viossat

    (CECO - Laboratoire d'econometrie de l'école polytechnique - CNRS : UMR7657 - Polytechnique - X)

Abstract

Nous étudions les propriétés de la réduction duale : une technique de réduction des jeux finis qui permet d'opérer une sélection entre les équilibres corrélés. Nous montrons que le processus de réduction est indépendant des fonctions d'utilités choisies pour représenter les préférences des agents et que les jeux à deux joueurs ont génériquement une unique réduction duale pleine. De plus, dans une réduction duale pleine, toutes les stratégies et tous les profils de stratégie qui ne sont jamais jouées dans des équilibres corrélés sont éliminées. Nous étudions les propriétés supplémentaires qu'a la réduction duale dans plusieurs classes de jeux et nous comparons la réduction duale à d'autres concepts de raffinement des équilibre corrélés. Enfin, nous passons en revue et relions les différentes preuves d'existence des équilibres corrélés fondées sur la programmation linéaire.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hal.archives-ouvertes.fr/docs/00/24/29/92/PDF/2005-06-07-956.pdf
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Working Papers with number hal-00242992.

as in new window
Length:
Date of creation: 2003
Date of revision:
Handle: RePEc:hal:wpaper:hal-00242992

Note: View the original document on HAL open archive server: http://hal.archives-ouvertes.fr/hal-00242992/en/
Contact details of provider:
Web page: http://hal.archives-ouvertes.fr/

Related research

Keywords: Réduction duale; Equilibres corrélés; Raffinement;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
  2. Dhillon, Amrita & Mertens, Jean Francois, 1996. "Perfect Correlated Equilibria," Journal of Economic Theory, Elsevier, vol. 68(2), pages 279-302, February.
  3. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759 Elsevier.
  4. Robert W. Rosenthal, 1973. "Correlated Equilibria in Some Classes of Two-Person Games," Discussion Papers 45, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  5. Roger B. Myerson, 1984. "Acceptable and Predominant Correlated Equilibria," Discussion Papers 591, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  6. Myerson, Roger B., 1997. "Dual Reduction and Elementary Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 183-202, October.
  7. Sorin, S., 1998. "Distribution Equilibrium I: definition and Examples," Papers 9835, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
  8. Yannick Viossat, 2003. "Geometry, Correlated Equilibria and Zero-Sum Games," Working Papers hal-00242993, HAL.
  9. Nau, Robert F. & McCardle, Kevin F., 1990. "Coherent behavior in noncooperative games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 424-444, April.
  10. Mertens, J.-F., 1986. "Repeated games," CORE Discussion Papers 1986024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  11. MERTENS , Jean-François & SORIN , Sylvain & ZAMIR , Shmuel, 1994. "Repeated Games. Part A : Background Material," CORE Discussion Papers 1994020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Yannick Viossat, 2003. "Geometry, Correlated Equilibria and Zero-Sum Games," Working Papers hal-00242993, HAL.
  2. Yannick Viossat, 2003. "Elementary Games and Games Whose Correlated Equilibrium Polytope Has Full Dimension," Working Papers hal-00242991, HAL.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00242992. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.