Advanced Search
MyIDEAS: Login

Dual Reduction and Elementary Games

Contents:

Author Info

  • Myerson, Roger B.

Abstract

Consider the linear incentive constraints that define the correlated equilibria of a game. The duals of these constraints generate Markov chains on the players' strategy sets. The stationary distributions for these Markov chains can be interpreted as the strategies in a reduced game, which is called a dual reduction. Any equilibrium of a dual reduction is an equilibrium of the original game. We say that a game is elementary if all incentive constraints can be satisfied as strict inequalities in a correlated equilibrium. Any game can be reduced to an elementary game by iterative dual reduction.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6WFW-45N4T98-D/2/679e9ff2f121a5f10dbf9de9f9f9d0c8
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Games and Economic Behavior.

Volume (Year): 21 (1997)
Issue (Month): 1-2 (October)
Pages: 183-202

as in new window
Handle: RePEc:eee:gamebe:v:21:y:1997:i:1-2:p:183-202

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/622836

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Roger B. Myerson, 1984. "Acceptable and Predominant Correlated Equilibria," Discussion Papers 591, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  2. DHILLON, Amrita & MERTENS, Jean-François, 1992. "Perfect correlated equilibria," CORE Discussion Papers 1992039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Nau, Robert F. & McCardle, Kevin F., 1990. "Coherent behavior in noncooperative games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 424-444, April.
  4. R. Aumann, 2010. "Subjectivity and Correlation in Randomized Strategies," Levine's Working Paper Archive 389, David K. Levine.
  5. repec:fth:louvco:9239 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:21:y:1997:i:1-2:p:183-202. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.