IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01839661.html
   My bibliography  Save this paper

Demand-pull instruments and the development of wind power in Europe: a counterfactual analysis

Author

Listed:
  • Marc Baudry

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Clément Bonnet

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

Renewable energy technologies are called to play a crucial role in the reduction of greenhouse gas (GHG) emissions. Since most of these technologies did not yet reach grid parity, public policies have been implemented in order to foster their deployment. The approach that has been privileged in Europe is the demand-pull approach that aims at creating a demand for these new technologies and at stimulating their diffusion. This paper examines the effect of demand-pull policies on the diffusion of onshore wind power technology in six European countries: Denmark, France, Germany, Italy, Portugal and Spain. In a first step, a micro-founded model of diffusion is calibrated in order to replicate the observed diffusion of wind power in these six countries. In a second step, a counterfactual analysis is conducted by investigating several scenarios. By taking into account the complex self-sustained dynamics of diffusion and the learning spillovers that operate in the wind power sector, we can derive several insights about demand-pull policies. First, the impact of a demand-pull policy on the diffusion of wind power is determined by the stage at which it comes to support it. The effect seems to be stronger at the beginning of the diffusion. Second, international spillovers do operate in the wind power sector. These international spillovers however are not strong enough to foster the diffusion of wind power in a country having no demand-pull support. We can derive from these two statements that a strategy consisting in not implementing any demand-pull policy, with the expectation that international spillovers will reduce the cost of wind power and foster the diffusion of the technology that then shall become competitive, is not a good option for a country targeting a high share of wind power in its energy mix.

Suggested Citation

  • Marc Baudry & Clément Bonnet, 2019. "Demand-pull instruments and the development of wind power in Europe: a counterfactual analysis," Post-Print hal-01839661, HAL.
  • Handle: RePEc:hal:journl:hal-01839661
    DOI: 10.1007/s10640-018-0267-3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    2. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    3. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    4. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
    5. Bean, Patrick & Blazquez, Jorge & Nezamuddin, Nora, 2017. "Assessing the cost of renewable energy policy options – A Spanish wind case study," Renewable Energy, Elsevier, vol. 103(C), pages 180-186.
    6. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    7. Menz, Fredric C. & Vachon, Stephan, 2006. "The effectiveness of different policy regimes for promoting wind power: Experiences from the states," Energy Policy, Elsevier, vol. 34(14), pages 1786-1796, September.
    8. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    9. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    10. Griliches, Zvi, 1980. "Hybrid Corn Revisited: A Reply," Econometrica, Econometric Society, vol. 48(6), pages 1463-1465, September.
    11. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    12. Pere Mir-Artigues & Pablo del Río, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Working Papers 2014/23, Institut d'Economia de Barcelona (IEB).
    13. Gelabert, Liliana & Labandeira, Xavier & Linares, Pedro, 2011. "An ex-post analysis of the effect of renewables and cogeneration on Spanish electricity prices," Energy Economics, Elsevier, vol. 33(S1), pages 59-65.
    14. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    15. Gavard, Claire, 2016. "Carbon price and wind power support in Denmark," Energy Policy, Elsevier, vol. 92(C), pages 455-467.
    16. Michael Smith & Johannes Urpelainen, 2014. "The Effect of Feed-in Tariffs on Renewable Electricity Generation: An Instrumental Variables Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 367-392, March.
    17. Sarzynski, Andrea & Larrieu, Jeremy & Shrimali, Gireesh, 2012. "The impact of state financial incentives on market deployment of solar technology," Energy Policy, Elsevier, vol. 46(C), pages 550-557.
    18. Coulomb, L. & Neuhoff, K., 2006. "Learning curves and changing product attributes: the case of wind turbines," Cambridge Working Papers in Economics 0618, Faculty of Economics, University of Cambridge.
    19. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    20. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    21. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    22. Mulder, Arjen, 2008. "Do economic instruments matter? Wind turbine investments in the EU(15)," Energy Economics, Elsevier, vol. 30(6), pages 2980-2991, November.
    23. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
    24. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    25. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    26. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    27. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    28. Hitaj, Claudia & Löschel, Andreas, 2019. "The impact of a feed-in tariff on wind power development in Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 18-35.
    29. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    30. Kirk Hamilton & Giovanni Ruta & Liaila Tajibaeva, 2006. "Capital Accumulation and Resource Depletion: A Hartwick Rule Counterfactual," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 34(4), pages 517-533, August.
    31. Verbruggen, Aviel & Lauber, Volkmar, 2012. "Assessing the performance of renewable electricity support instruments," Energy Policy, Elsevier, vol. 45(C), pages 635-644.
    32. Meyer, Niels I., 2003. "European schemes for promoting renewables in liberalised markets," Energy Policy, Elsevier, vol. 31(7), pages 665-676, June.
    33. Pettersson, Maria & Ek, Kristina & Söderholm, Kristina & Söderholm, Patrik, 2010. "Wind power planning and permitting: Comparative perspectives from the Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3116-3123, December.
    34. Hitaj, Claudia, 2013. "Wind power development in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 394-410.
    35. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    36. Schmid, Gisèle, 2012. "The development of renewable energy power in India: Which policies have been effective?," Energy Policy, Elsevier, vol. 45(C), pages 317-326.
    37. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    38. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    39. Pere Mir-Artigues & Pablo del Río, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Working Papers 2014/23, Institut d'Economia de Barcelona (IEB).
    40. Sovacool, Benjamin K., 2013. "Energy policymaking in Denmark: Implications for global energy security and sustainability," Energy Policy, Elsevier, vol. 61(C), pages 829-839.
    41. Danchev, Svetoslav & Maniatis, George & Tsakanikas, Aggelos, 2010. "Returns on investment in electricity producing photovoltaic systems under de-escalating feed-in tariffs: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 500-505, January.
    42. Marques, António Cardoso & Fuinhas, José Alberto, 2012. "Are public policies towards renewables successful? Evidence from European countries," Renewable Energy, Elsevier, vol. 44(C), pages 109-118.
    43. Bolinger, Mark & Wiser, Ryan, 2012. "Understanding wind turbine price trends in the U.S. over the past decade," Energy Policy, Elsevier, vol. 42(C), pages 628-641.
    44. Mir-Artigues, Pere & del Río, Pablo, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Energy Policy, Elsevier, vol. 69(C), pages 430-442.
    45. Gross, Robert & Blyth, William & Heptonstall, Philip, 2010. "Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs," Energy Economics, Elsevier, vol. 32(4), pages 796-804, July.
    46. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    47. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    48. René Kemp, 1998. "The Diffusion of Biological Waste-Water Treatment Plants in the Dutch Food and Beverage Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 113-136, July.
    49. Kristie Ebi, 2012. "Key themes in the Working Group II contribution to the Intergovernmental Panel on Climate Change 5th assessment report," Climatic Change, Springer, vol. 114(3), pages 417-426, October.
    50. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    51. Bass, Frank M, 1980. "The Relationship between Diffusion Rates, Experience Curves, and Demand Elasticities for Consumer Durable Technological Innovations," The Journal of Business, University of Chicago Press, vol. 53(3), pages 51-67, July.
    52. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
    53. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    54. Georg Zachmann & Amma Serwaah & Michele Peruzzi, 2014. "When and how to support renewables? Letting the data speak," Working Papers 811, Bruegel.
    55. Marques, António Cardoso & Fuinhas, José Alberto, 2011. "Drivers promoting renewable energy: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1601-1608, April.
    56. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    57. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    58. Delmas, Magali A. & Montes-Sancho, Maria J., 2011. "U.S. state policies for renewable energy: Context and effectiveness," Energy Policy, Elsevier, vol. 39(5), pages 2273-2288, May.
    59. Lüthi, Sonja & Prässler, Thomas, 2011. "Analyzing policy support instruments and regulatory risk factors for wind energy deployment--A developers' perspective," Energy Policy, Elsevier, vol. 39(9), pages 4876-4892, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clément Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Sokhna Seck & Marine Simoën, 2018. "The nexus between climate negotiations and low-carbon innovation: a geopolitics of renewable energy patents," Working Papers hal-04141680, HAL.
    2. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    3. Julián D. Gómez, 2018. "¿Qué determina la adopción de tecnologías para la generación de energías renovables entre países?," Documentos CEDE 17132, Universidad de los Andes, Facultad de Economía, CEDE.
    4. Emmanuel Hache & Samuel Carcanague & Clément Bonnet & Gondia Sokhna Seck & Marine Simoën, 2019. "Some geopolitical issues of the energy transition," Working Papers hal-03101697, HAL.
    5. Edouard Civel & Marc Baudry, 2018. "The Fate of Inventions. What can we learn from Bayesian learning in strategic options model of adoption ?," EconomiX Working Papers 2018-47, University of Paris Nanterre, EconomiX.
    6. Xin-gang, Zhao & Wei, Wang & Jieying, Wang, 2022. "The policy effects of demand-pull and technology-push on the diffusion of wind power: A scenario analysis based on system dynamics approach," Energy, Elsevier, vol. 261(PA).
    7. Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.
    8. Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    2. Marc Baudry & Clément Bonnet, 2015. "Market pull instruments and the development of wind power in Europe: a counterfactual analysis," EconomiX Working Papers 2015-18, University of Paris Nanterre, EconomiX.
    3. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    4. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    5. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    6. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    7. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    8. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    9. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    10. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    11. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    12. Mulder, Machiel & Scholtens, Bert, 2016. "A plant-level analysis of the spill-over effects of the German Energiewende," Applied Energy, Elsevier, vol. 183(C), pages 1259-1271.
    13. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.
    14. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    15. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    16. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    17. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    18. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    19. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    20. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01839661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.