IDEAS home Printed from https://ideas.repec.org/p/fpr/menawp/13.html
   My bibliography  Save this paper

Climate change and agriculture in the Sudan: Impact pathways beyond changes in mean rainfall and temperature

Author

Listed:
  • Siddig, Khalid
  • Stepanyan, Davit
  • Wiebelt, Manfred
  • Zhu, Tingju
  • Grethe, Harald

Abstract

Several environmental changes have occurred in the Sudan in the past; several are ongoing; and others are projected to happen in the future. The Sudan has witnessed increases in temperature, floods, rainfall variability, and concurrent droughts. In a country where agriculture, which is mainly rainfed, is a major contributor to gross domestic product, foreign exchange earnings, and livelihoods, these changes are especially important, requiring measurement and analysis of their impact. This study not only analyzes the economy-wide impacts of climate change, but also consults national policy plans, strategies, and environmental assessments to identify interventions which may mitigate the effects. We feed climate forcing, water demand, and macro-socioeconomic trends into a modelling suite that includes models for global hydrology, river basin management, water stress, and crop growth, all connected to the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT). The outcomes of this part of the modeling suite are annual crop yields and global food prices under various climate change scenarios until 2050. The effects of such changes on production, consumption, macroeconomic indicators, and income distribution are assessed using a single country dynamic Computable General Equilibrium (CGE) model for the Sudan. Additionally, we introduce yield variability into the CGE model based on stochastic projections of crop yields until 2050. The results of the model simulations reveal that, while the projected mean climate changes bring some good news for the Sudan, extreme negative variability costs the Sudan cumulatively between 2018 and 2050 US$ 109.5 billion in total absorption and US$ 105.5 billion in GDP relative to a historical mean climate scenario without climate change.

Suggested Citation

  • Siddig, Khalid & Stepanyan, Davit & Wiebelt, Manfred & Zhu, Tingju & Grethe, Harald, 2018. "Climate change and agriculture in the Sudan: Impact pathways beyond changes in mean rainfall and temperature," MENA working papers 13, International Food Policy Research Institute (IFPRI).
  • Handle: RePEc:fpr:menawp:13
    as

    Download full text from publisher

    File URL: http://www.ifpri.org/cdmref/p15738coll2/id/132833/filename/133043.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Artavia, Marco & Grethe, Harald & Zimmermann, Georg, 2015. "Stochastic market modeling with Gaussian Quadratures: Do rotations of Stroud's octahedron matter?," Economic Modelling, Elsevier, vol. 45(C), pages 155-168.
    2. Hallegatte, Stephane & Hourcade, Jean-Charles & Dumas, Patrice, 2007. "Why economic dynamics matter in assessing climate change damages: Illustration on extreme events," Ecological Economics, Elsevier, vol. 62(2), pages 330-340, April.
    3. Johan Rockström & Malin Falkenmark, 2015. "Agriculture: Increase water harvesting in Africa," Nature, Nature, vol. 519(7543), pages 283-285, March.
    4. Arndt, Channing, 1996. "An Introduction To Systematic Sensitivity Analysis Via Gaussian Quadrature," Technical Papers 28709, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Siddig, Khalid & Grethe, Harald, 2014. "International price transmission in CGE models: How to reconcile econometric evidence and endogenous model response?," Economic Modelling, Elsevier, vol. 38(C), pages 12-22.
    6. Siddig, Khalid & Elagra, Samir & Grethe, Harald & Mubarak, Amel, 2016. "A Post-Separation Social Accounting Matrix for the Sudan," Working Paper Series 244286, Humboldt University Berlin, Department of Agricultural Economics.
    7. Wiebelt, Manfred & Breisinger, Clemens & Ecker, Olivier & Al-Riffai, Perrihan & Robertson, Richard & Thiele, Rainer, 2013. "Compounding food and income insecurity in Yemen: Challenges from climate change," Food Policy, Elsevier, vol. 43(C), pages 77-89.
    8. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    9. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    10. World Bank, 2017. "World Development Indicators 2017," World Bank Publications - Books, The World Bank Group, number 26447, December.
    11. Nelson, Gerald C. & Rosegrant, Mark W. & Palazzo, Amanda & Gray, Ian & Ingersoll, Christina & Robertson, Richard & Tokgoz, Simla & Zhu, Tingju & Sulser, Timothy B. & Ringler, Claudia & Msangi, Siwa & , 2010. "Food security, farming, and climate change to 2050: Scenarios, results, policy options," Research reports Gerald C. Nelson, et al., International Food Policy Research Institute (IFPRI).
    12. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    13. Manfred Wiebelt & Perrihan Al-Riffai & Clemens Breisinger & Richard Robertson, 2015. "Who bears the costs of climate change? evidence from Tunisia," Journal of Developing Areas, Tennessee State University, College of Business, vol. 49(2), pages 1-21, April-Jun.
    14. Jalloh, Abdulai & Nelson, Gerald C. & Thomas, Timothy S. & Zougmoré, Robert & Roy-Macauley, Harold, 2013. "West african agriculture and climate change: A comprehensive analysis:," Issue briefs 75, International Food Policy Research Institute (IFPRI).
    15. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    16. Dorte Verner & Clemens Breisinger, 2013. "Economics of Climate Change in the Arab World : Case Studies from the Syrian Arab Republic, Tunisia, and the Republic of Yemen," World Bank Publications - Books, The World Bank Group, number 13124, December.
    17. Channing Arndt & James Thurlow, 2015. "Climate uncertainty and economic development: evaluating the case of Mozambique to 2050," Climatic Change, Springer, vol. 130(1), pages 63-75, May.
    18. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    19. Channing Arndt & Adam Schlosser & Kenneth Strzepek & James Thurlow, 2014. "Climate Change and Economic Growth Prospects for Malawi: An Uncertainty Approach," Journal of African Economies, Centre for the Study of African Economies, vol. 23(suppl_2), pages 83-107.
    20. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    21. Channing Arndt & Finn Tarp & James Thurlow, 2015. "The Economic Costs of Climate Change: A Multi-Sector Impact Assessment for Vietnam," Sustainability, MDPI, vol. 7(4), pages 1-15, April.
    22. Channing Arndt & Felix Asante & James Thurlow, 2015. "Implications of Climate Change for Ghana’s Economy," Sustainability, MDPI, vol. 7(6), pages 1-18, June.
    23. International Monetary Fund, 2013. "Sudan: Selected Issues," IMF Staff Country Reports 2013/320, International Monetary Fund.
    24. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.
    25. Mohamed S. Siam & Elfatih A. B. Eltahir, 2017. "Climate change enhances interannual variability of the Nile river flow," Nature Climate Change, Nature, vol. 7(5), pages 350-354, May.
    26. Pauw, Karl & Thurlow, James & Bachu, Murthy & Van Seventer, Dirk Ernst, 2011. "The economic costs of extreme weather events: a hydrometeorological CGE analysis for Malawi," Environment and Development Economics, Cambridge University Press, vol. 16(2), pages 177-198, April.
    27. Channing Arndt & Adam Schlosser & Kenneth Strzepek & James Thurlow, 2014. "Climate Change and Economic Growth Prospects for Malawi: An Uncertainty Approach," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 23(suppl_2), pages 83-107.
    28. Harry M. Kaiser & Susan J. Riha & Daniel S. Wilks & David G. Rossiter & Radha Sampath, 1993. "A Farm-Level Analysis of Economic and Agronomic Impacts of Gradual Climate Warming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 387-398.
    29. Clemens Breisinger & Tingju Zhu & Perrihan Al Riffai & Gerald Nelson & Richard Robertson & Jose Funes & Dorte Verner, 2013. "Economic Impacts Of Climate Change In Syria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:thr:techub:10014:y:2020:i:1:p:296-309 is not listed on IDEAS
    2. Mukashov, Askar & Henning, Christian H. C. A. & Robertson, Richard & Wiebelt, Manfred, 2021. "The role of Global Climate Change in structural transformation of Sub-Saharan Africa: Case study of Senegal," Kiel Working Papers 2187, Kiel Institute for the World Economy (IfW Kiel).
    3. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    4. Liu, Yunqiang & Liu, Sha & Ye, Deping & Tang, Hong & Wang, Fang, 2022. "Dynamic impact of negative public sentiment on agricultural product prices during COVID-19," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    5. Anton Orlov & Anne Sophie Daloz & Jana Sillmann & Wim Thiery & Clara Douzal & Quentin Lejeune & Carl Schleussner, 2021. "Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production," Economics of Disasters and Climate Change, Springer, vol. 5(3), pages 367-390, October.
    6. Litao Feng & Wei Liu & Zhihui Zhao & Yining Wang, 2023. "Rainfall fluctuations and rural poverty: Evidence from Chinese county‐level data," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 31(3), pages 633-656, July.
    7. Saeed Solaymani, 2023. "Impacts of Environmental Variables on Rice Production in Malaysia," World, MDPI, vol. 4(3), pages 1-17, July.
    8. Zahra Ranjbar & Mohammad Chizari & Hasan Sadighi & Homayon Farhadian & Philippe Lebailly & Thomas Dogot & Jorge Armando Ortegón Rojas & Yenny Katherine Parra-Acosta & Hossein Azadi, 2021. "Risk Factors in Various Climates of Wheat Production in Western Iran: Experts’ Opinions," Agriculture, MDPI, vol. 11(12), pages 1-17, December.
    9. Mohammed B. Altoom & Elhadi Adam & Khalid Adem Ali, 2023. "Mapping and Monitoring Spatio-Temporal Patterns of Rainfed Agriculture Lands of North Darfur State, Sudan, Using Earth Observation Data," Land, MDPI, vol. 12(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukashov, Askar & Henning, Christian H. C. A. & Robertson, Richard & Wiebelt, Manfred, 2021. "The role of Global Climate Change in structural transformation of Sub-Saharan Africa: Case study of Senegal," Kiel Working Papers 2187, Kiel Institute for the World Economy (IfW Kiel).
    2. Grethe, H. & Siddig, K. & Stepanyan, D. & Zhu, T. & Wiebelt, M., 2018. "Beyond mean rainfall and temperature changes: distributional effects of stochastic yield variability in the Sudan," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275903, International Association of Agricultural Economists.
    3. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    4. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    5. Bobojonov, Ihtiyor & Aw-Hassan, Aden, 2014. "Impacts of climate change on farm income security in Central Asia: An integrated modeling approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 188, pages 245-255.
    6. Andersen, Lykke E. & Breisinger, Clemens & Mason d'Croz, Daniel & Jemio, Luis Carlos & Ringler, Claudia & Robertson, Richard D. & Verner, Dorte & Wiebelt, Manfred, 2014. "Agriculture, incomes, and gender in Latin America by 2050: An assessment of climate change impacts and household resilience for Brazil, Mexico, and Peru:," IFPRI discussion papers 1390, International Food Policy Research Institute (IFPRI).
    7. Annalisa Marini, 2019. "The Impact of Weather on Commodity Prices: A Warning for the Future," Discussion Papers 1902, University of Exeter, Department of Economics.
    8. Borgomeo, Edoardo & Vadheim, Bryan & Woldeyes, Firew B. & Alamirew, Tena & Tamru, Seneshaw & Charles, Katrina J. & Kebede, Seifu & Walker, Oliver, 2018. "The Distributional and Multi-Sectoral Impacts of Rainfall Shocks: Evidence From Computable General Equilibrium Modelling for the Awash Basin, Ethiopia," Ecological Economics, Elsevier, vol. 146(C), pages 621-632.
    9. Jean-Marc Montaud, 2019. "Agricultural Drought Impacts on Crops Sector and Adaptation Options in Mali: a Macroeconomic Computable General Equilibrium Analysis," Working papers of CATT hal-02141050, HAL.
    10. Jean-Marc MONTAUD, 2019. "Agricultural Drought Impacts on Crops Sector and Adaptation Options in Mali: a Macroeconomic Computable General Equilibrium Analysis," Working Papers 2018-2019_5, CATT - UPPA - Université de Pau et des Pays de l'Adour, revised Feb 2019.
    11. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    12. De Pinto, Alessandro & Wiebe, Keith D. & Rosegrant, Mark W., 2016. "Climate change and agricultural policy options: A global-to-local approach," Policy briefs 978-089629-244-4, International Food Policy Research Institute (IFPRI).
    13. Andersen, Lykke E. & Breisinger, Clemens & Jemio, Luis Carlos & Mason-D’Croz, Daniel & Ringler, Claudia & Robertson, Richard D. & Verner, Dorte & Wiebelt, Manfred, 2016. "Climate change impacts and household resilience: Prospects for 2050 in Brazil, Mexico, and Peru," Food policy reports 978-0-89629-581-0, International Food Policy Research Institute (IFPRI).
    14. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    15. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    16. Stepanyan, Davit & Grethe, Harald & Zimmermann, Georg & Siddig, Khalid & Deppermann, Andre & Feuerbacher, Arndt & Luckmann, Jonas & Valin, Hugo & Nishizawa, Takamasa & Ermolieva, Tatiana & Havlik, Pet, 2019. "Multiple Rotations of Gaussian Quadratures: An Efficient Method for Uncertainty Analyses in Large-Scale Simulation Models," Conference papers 333052, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    18. Randhir, Timothy O. & Hertel, Thomas W., 2000. "Trade Liberalization as a Vehicle for Adapting to Global Warming," Agricultural and Resource Economics Review, Cambridge University Press, vol. 29(2), pages 159-172, October.
    19. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    20. Noubissi Domguia, Edmond & Njangang, Henri, 2019. "Agricultural Growth and Environmental Quality in Cameroon: Evidence from ARDL Bound Testing Approach," MPRA Paper 91735, University Library of Munich, Germany.

    More about this item

    Keywords

    EGYPT; ARAB COUNTRIES; MIDDLE EAST; NORTH AFRICA; AFRICA; SUDAN; EAST AFRICA; AFRICA SOUTH OF SAHARA; AFRICA; climate change; drought stress; crop yields; climate change mitigation; agricultural productivity; resource management; economic development; prices; nutrition; malnutrition; commodities; trade; food supply; food security; technological changes; commodity markets; interventions; climate variability; local yield changes; Computable General Equilibrium (CGE) model; IMPACT model;
    All these keywords.

    JEL classification:

    • Q17 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agriculture in International Trade
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fpr:menawp:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ifprius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.