IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/62725.html
   My bibliography  Save this paper

Balancing water resources conservation and food security in China

Author

Listed:
  • Dalin, Carole
  • Qiu, Huanguang
  • Hanasaki, Naota
  • Mauzerall, Denise L.
  • Rodriguez-Iturbe, Ignacio

Abstract

China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

Suggested Citation

  • Dalin, Carole & Qiu, Huanguang & Hanasaki, Naota & Mauzerall, Denise L. & Rodriguez-Iturbe, Ignacio, 2015. "Balancing water resources conservation and food security in China," LSE Research Online Documents on Economics 62725, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:62725
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/62725/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosegrant, Mark W., 1997. "Water resources in the twenty-first century: challenges and implications for action," 2020 vision discussion papers 20, International Food Policy Research Institute (IFPRI).
    2. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    3. Michelle Gilmartin & Peter McGregor & Kim Swales & Karen Turner, 2009. "The added value from adopting a CGE approach to analyse changes in environmental trade balances," Working Papers 0903, University of Strathclyde Business School, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    2. Huang, Jing & Ridoutt, Bradley G. & Thorp, Kelly R. & Wang, Xuechun & Lan, Kang & Liao, Jun & Tao, Xu & Wu, Caiyan & Huang, Jianliang & Chen, Fu & Scherer, Laura, 2019. "Water-scarcity footprints and water productivities indicate unsustainable wheat production in China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    6. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    7. Ling Luo & Dehua Mao & Zongming Wang & Baojia Du & Hengqi Yan & Bai Zhang, 2018. "Remote Sensing and GIS Support to Identify Potential Areas for Wetland Restoration from Cropland: A Case Study in the West Songnen Plain, Northeast China," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
    8. Wang, Xingwang & Lei, Huimin & Li, Jiadi & Huo, Zailin & Zhang, Yongqiang & Qu, Yanping, 2023. "Estimating evapotranspiration and yield of wheat and maize croplands through a remote sensing-based model," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    3. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    4. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    6. Zhang, Yan & Zheng, Hongmei & Yang, Zhifeng & Su, Meirong & Liu, Gengyuan & Li, Yanxian, 2015. "Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China," Energy Policy, Elsevier, vol. 86(C), pages 651-663.
    7. Pinstrup-Andersen, Per, 2000. "Food policy research for developing countries: emerging issues and unfinished business," Food Policy, Elsevier, vol. 25(2), pages 125-141, April.
    8. Yuping Deng & Yanrui Wu & Helian Xu, 2022. "Emission Reduction and Value-added Export Nexus at Firm Level," Economics Discussion / Working Papers 22-19, The University of Western Australia, Department of Economics.
    9. Pinstrup-Andersen, Per & Pandya-Lorch, Rajul, 1997. "Food Security: A Global Perspective," 1997 Conference, August 10-16, 1997, Sacramento, California 197029, International Association of Agricultural Economists.
    10. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    11. Lijuan Du & Li Xu & Yanping Li & Changshun Liu & Zhenhua Li & Jefferson S. Wong & Bo Lei, 2019. "China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    12. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    13. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    14. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    15. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    16. Jonas Bunsen & Matthias Finkbeiner, 2022. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    17. Kowalewski, Julia, 2009. "Methodology of the input-output analysis," HWWI Research Papers 1-25, Hamburg Institute of International Economics (HWWI).
    18. Jonas Wanvoeke & Jean-Philippe Venot & Margreet Zwarteveen & Charlotte de Fraiture, 2015. "Performing the success of an innovation: the case of smallholder drip irrigation in Burkina Faso," Water International, Taylor & Francis Journals, vol. 40(3), pages 432-445, May.
    19. Guiliang Tian & Xiaosheng Han & Chen Zhang & Jiaojiao Li & Jining Liu, 2020. "Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    20. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.

    More about this item

    Keywords

    virtual water; food trade; trade policy; sustainable agriculture; water saving;
    All these keywords.

    JEL classification:

    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:62725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.