IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1251-d318528.html
   My bibliography  Save this article

Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis

Author

Listed:
  • Guiliang Tian

    (Business School, Hohai University, Nanjing, 211100, China)

  • Xiaosheng Han

    (Business School, Hohai University, Nanjing, 211100, China)

  • Chen Zhang

    (Department of Information Systems and Analytics, Bryant University, Smithfield, RI 02917, USA)

  • Jiaojiao Li

    (Business School, Hohai University, Nanjing, 211100, China)

  • Jining Liu

    (Business School, Hohai University, Nanjing, 211100, China)

Abstract

With the imminent need of regional environmental protection and sustainable economic development, the concept of virtual water is widely used to solve the problem of regional water shortage. In this paper, nine provinces, namely Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong in the Yellow River Basin (YRB), are taken as the research objects. Through the analysis of input-output tables of 30 provinces in China in 2012, the characteristics of virtual water trade in this region are estimated by using a multi-regional input-output (MRIO) model. The results show that: (1) The YRB had a net inflow of 17.387 billion m³ of virtual water in 2012. In interprovincial trade, other provinces outside the basin export 21.721 billion m³ of virtual water into the basin. In international trade, the basin exports 4334 million m³ of virtual water to the international market. (2) There are different virtual flow paths in the basin. Shanxi net inputs virtual water by interprovincial trade and international trade, while Gansu and Ningxia net output virtual water by interprovincial trade and international trade. The other six provinces all net output virtual water through international trade, and obtain the net input of virtual water from other provinces outside the basin. (3) From the industrial structure of the provinces in the basin, the provinces with a relatively developed economy, such as Shandong and Shanxi, mostly import virtual water in the agricultural sector, while relatively developing provinces, such as Gansu and Ningxia, mostly import virtual water in the industrial sector. In order to sustain the overall high-quality development of the YRB, we propose the virtual water trade method to quantify the net flow of virtual water in each province and suggest the compensation responsibility of the virtual water net inflow area, and the compensation need of the virtual water net outflow area, in order to achieve efficient water resources utilization.

Suggested Citation

  • Guiliang Tian & Xiaosheng Han & Chen Zhang & Jiaojiao Li & Jining Liu, 2020. "Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1251-:d:318528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    2. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    3. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    4. Fernando Miralles-Wilhelm, 2016. "Development and application of integrative modeling tools in support of food-energy-water nexus planning—a research agenda," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 3-10, March.
    5. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    6. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    7. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud Bijani & Dariush Hayati & Hossein Azadi & Vjekoslav Tanaskovik & Frank Witlox, 2020. "Causes and Consequences of the Conflict among Agricultural Water Beneficiaries in Iran," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    2. Taolu Luo & Guiliang Tian & Jiawen Li & Xiaosheng Han, 2024. "A Comprehensive Analysis of China’s Water Resources Tax Reform," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
    3. Zhaodan Wu & Yi Zhang & Yu Hua & Quanliang Ye & Lixiao Xu & Shiqi Wang, 2020. "An Improved System Dynamics Model to Evaluate Regional Water Scarcity from a Virtual Water Perspective: A Case Study of Henan Province, China," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    4. Yike Xu & Guiliang Tian & Shuwen Xu & Qing Xia, 2023. "Analysis of Virtual Water Flow Patterns and Their Drivers in the Yellow River Basin," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    5. Yang Yang & Shiwei Liu & Cunde Xiao & Cuiyang Feng & Chenyu Li, 2021. "Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    2. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    3. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    4. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    5. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    6. Jonas Bunsen & Matthias Finkbeiner, 2022. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    7. Xueting Zhao & Randall W. Jackson, 2016. "China’s Inter-Regional Trade of Virtual Water — A Multi-Regional Input–Output Table Based Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-28, June.
    8. Raul Munoz Castillo & Kuishuang Feng & Klaus Hubacek & Laixiang Sun & Joaquim Guilhoto & Fernando Miralles-Wilhelm, 2017. "Uncovering the Green, Blue, and Grey Water Footprint and Virtual Water of Biofuel Production in Brazil: A Nexus Perspective," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    9. Xuebing Yao & Xu Tang & Arash Farnoosh & Cuiyang Feng, 2021. "Quantifying virtual water scarcity risk transfers of energy system in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 945-969, October.
    10. A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
    11. Zhang, Kai & Zhang, Yiyi & Xi, Shan & Liu, Jiefeng & Li, Jiashuo & Hou, Shengren & Chen, Bin, 2022. "Multi-objective optimization of energy-water nexus from spatial resource reallocation perspective in China," Applied Energy, Elsevier, vol. 314(C).
    12. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    13. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    14. Alexandros Gkatsikos & Konstadinos Mattas, 2021. "The Paradox of the Virtual Water Trade Balance in the Mediterranean Region," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    15. Court, Christa D. & Munday, Max & Roberts, Annette & Turner, Karen, 2015. "Can hazardous waste supply chain ‘hotspots’ be identified using an input–output framework?," European Journal of Operational Research, Elsevier, vol. 241(1), pages 177-187.
    16. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    17. White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.
    18. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    19. Rita Rani Chopra & Smruti Ranjan Behera, 2021. "Assessment of interstate dynamics of virtual water trade flows in primary crops production: Empirical evidence from India," Economics Bulletin, AccessEcon, vol. 41(3), pages 1860-1875.
    20. Weinzettel, Jan & Pfister, Stephan, 2019. "International trade of global scarce water use in agriculture: Modeling on watershed level with monthly resolution," Ecological Economics, Elsevier, vol. 159(C), pages 301-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1251-:d:318528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.