IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2049-d118070.html
   My bibliography  Save this article

Uncovering the Green, Blue, and Grey Water Footprint and Virtual Water of Biofuel Production in Brazil: A Nexus Perspective

Author

Listed:
  • Raul Munoz Castillo

    (Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
    Water & Sanitation Division, Inter-American Development Bank, Washington, DC 20057, USA)

  • Kuishuang Feng

    (Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA)

  • Klaus Hubacek

    (Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
    Department of Environmental Studies, Masaryk University, Brno 602 00, Czech Republic)

  • Laixiang Sun

    (Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
    International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria)

  • Joaquim Guilhoto

    (Organization for Economic Co-operation and Development (OECD), 75775 Paris, France
    Department of Economics, University of São Paulo, São Paulo 05508-020, Brazil)

  • Fernando Miralles-Wilhelm

    (Department of Atmospheric and Oceanic Sciences, College Park, University of Maryland, College Park, MD 20742, USA)

Abstract

Brazil plays a major role in the global biofuel economy as the world’s second largest producer and consumer and the largest exporter of ethanol. Its demand is expected to significantly increase in coming years, largely driven by national and international carbon mitigation targets. However, biofuel crops require significant amounts of water and land resources that could otherwise be used for the production of food, urban water supply, or energy generation. Given Brazil’s uneven spatial distribution of water resources among regions, a potential expansion of ethanol production will need to take into account regional or local water availability, as an increased water demand for irrigation would put further pressure on already water-scarce regions and compete with other users. By applying an environmentally extended multiregional input-output (MRIO) approach, we uncover the scarce water footprint and the interregional virtual water flows associated with sugarcane-derived biofuel production driven by domestic final consumption and international exports in 27 states in Brazil. Our results show that bio-ethanol is responsible for about one third of the total sugarcane water footprint besides sugar and other processed food production. We found that richer states such as São Paulo benefit by accruing a higher share of economic value added from exporting ethanol as part of global value chains while increasing water stress in poorer states through interregional trade. We also found that, in comparison with other crops, sugarcane has a comparative advantage when rainfed while showing a comparative disadvantage as an irrigated crop; a tradeoff to be considered when planning irrigation infrastructure and bioethanol production expansion.

Suggested Citation

  • Raul Munoz Castillo & Kuishuang Feng & Klaus Hubacek & Laixiang Sun & Joaquim Guilhoto & Fernando Miralles-Wilhelm, 2017. "Uncovering the Green, Blue, and Grey Water Footprint and Virtual Water of Biofuel Production in Brazil: A Nexus Perspective," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2049-:d:118070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Serrano & Dabo Guan & Rosa Duarte & Jouni Paavola, 2016. "Virtual Water Flows in the EU27: A Consumption-based Approach," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 547-558, June.
    2. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    3. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    4. Wan, Liyang & Wang, Can & Cai, Wenjia, 2016. "Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach," Applied Energy, Elsevier, vol. 184(C), pages 26-39.
    5. Fernando Miralles-Wilhelm, 2016. "Development and application of integrative modeling tools in support of food-energy-water nexus planning—a research agenda," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 3-10, March.
    6. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    2. Wenyi Du & Yubing Fan & Lina Yan, 2018. "Pricing Strategies for Competitive Water Supply Chains under Different Power Structures: An Application to the South-to-North Water Diversion Project in China," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    3. G.-Fivos Sargentis & Paraskevi Siamparina & Georgia-Konstantina Sakki & Andreas Efstratiadis & Michalis Chiotinis & Demetris Koutsoyiannis, 2021. "Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    5. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiliang Tian & Xiaosheng Han & Chen Zhang & Jiaojiao Li & Jining Liu, 2020. "Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    2. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    3. Weinzettel, Jan & Pfister, Stephan, 2019. "International trade of global scarce water use in agriculture: Modeling on watershed level with monthly resolution," Ecological Economics, Elsevier, vol. 159(C), pages 301-311.
    4. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    5. Gino Sturla & Lorenzo Ciulla & Benedetto Rocchi, 2022. "Italy's Volumetric, Scarce and Social-scarce water footprint: a Hydro Economic Input-Output Analysis," Working Papers - Economics wp2022_17.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    6. Linghao Meng & Jusen Asuka, 2022. "Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    7. Siyu Hou & Yu Liu & Xu Zhao & Martin R. Tillotson & Wei Guo & Yiping Li, 2018. "Blue and Green Water Footprint Assessment for China—A Multi-Region Input–Output Approach," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    8. Mohamad Afkhami & Thomas Bassetti & Hamed Ghoddusi & Filippo Pavesi, 2018. "Virtual Water Trade: The Implications of Capital Scarcity," Working Papers 03/2018, University of Verona, Department of Economics.
    9. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    10. A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
    11. Distefano, Tiziano & Kelly, Scott, 2017. "Are we in deep water? Water scarcity and its limits to economic growth," Ecological Economics, Elsevier, vol. 142(C), pages 130-147.
    12. Wang, Saige & Cao, Tao & Chen, Bin, 2021. "Identifying critical sectors and supply chain paths for virtual water and energy-related water trade in China," Applied Energy, Elsevier, vol. 299(C).
    13. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    14. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    15. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    16. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    17. Alexandros Gkatsikos & Konstadinos Mattas, 2021. "The Paradox of the Virtual Water Trade Balance in the Mediterranean Region," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    18. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    19. Court, Christa D. & Munday, Max & Roberts, Annette & Turner, Karen, 2015. "Can hazardous waste supply chain ‘hotspots’ be identified using an input–output framework?," European Journal of Operational Research, Elsevier, vol. 241(1), pages 177-187.
    20. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2049-:d:118070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.