IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v52y2013icp55-65.html
   My bibliography  Save this article

Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine

Author

Listed:
  • Bodisco, Timothy
  • Brown, Richard J.

Abstract

The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 15, the inter-cycle variability is substantially increased compared to normal operation.

Suggested Citation

  • Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
  • Handle: RePEc:eee:energy:v:52:y:2013:i:c:p:55-65
    DOI: 10.1016/j.energy.2012.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212009590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tauzia, Xavier & Maiboom, Alain & Shah, Samiur Rahman, 2010. "Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine," Energy, Elsevier, vol. 35(9), pages 3628-3639.
    2. Shehata, M.S., 2010. "Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine," Energy, Elsevier, vol. 35(12), pages 4710-4725.
    3. Kouremenos, D.A. & Rakopoulos, C.D. & Kotsiopoulos, P., 1990. "Comparative performance and emission studies for vaporized diesel fuel and gasoline as supplements in swirl-chamber diesel engines," Energy, Elsevier, vol. 15(12), pages 1153-1160.
    4. Selim, Mohamed Y.E. & Radwan, M.S. & Saleh, H.E., 2008. "Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds," Renewable Energy, Elsevier, vol. 33(6), pages 1173-1185.
    5. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    6. Carlucci, A.P. & de Risi, A. & Laforgia, D. & Naccarato, F., 2008. "Experimental investigation and combustion analysis of a direct injection dual-fuel diesel–natural gas engine," Energy, Elsevier, vol. 33(2), pages 256-263.
    7. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    8. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    9. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    10. Karthikeyan, R. & Mahalakshmi, N.V., 2007. "Performance and emission characteristics of a turpentine–diesel dual fuel engine," Energy, Elsevier, vol. 32(7), pages 1202-1209.
    11. Şahin, Z. & Durgun, O. & Bayram, C., 2008. "Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine," Energy, Elsevier, vol. 33(8), pages 1298-1310.
    12. Lakshmanan, T. & Nagarajan, G., 2010. "Experimental investigation of timed manifold injection of acetylene in direct injection diesel engine in dual fuel mode," Energy, Elsevier, vol. 35(8), pages 3172-3178.
    13. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zare, Ali & Bodisco, Timothy A. & Nabi, Md Nurun & Hossain, Farhad M. & Rahman, M.M. & Ristovski, Zoran D. & Brown, Richard J., 2017. "The influence of oxygenated fuels on transient and steady-state engine emissions," Energy, Elsevier, vol. 121(C), pages 841-853.
    2. Faisal Lodi & Ali Zare & Priyanka Arora & Svetlana Stevanovic & Mohammad Jafari & Zoran Ristovski & Richard J. Brown & Timothy Bodisco, 2020. "Combustion Analysis of a Diesel Engine during Warm up at Different Coolant and Lubricating Oil Temperatures," Energies, MDPI, vol. 13(15), pages 1-21, August.
    3. Mitchell, Brett J. & Zare, Ali & Bodisco, Timothy A. & Nabi, Md Nurun & Hossain, Farhad M. & Ristovski, Zoran D. & Brown, Richard J., 2017. "Engine blow-by with oxygenated fuels: A comparative study into cold and hot start operation," Energy, Elsevier, vol. 140(P1), pages 612-624.
    4. Zhou, J.H. & Cheung, C.S. & Zhao, W.Z. & Leung, C.W., 2016. "Diesel–hydrogen dual-fuel combustion and its impact on unregulated gaseous emissions and particulate emissions under different engine loads and engine speeds," Energy, Elsevier, vol. 94(C), pages 110-123.
    5. S. M. Ashrafur Rahman & Md. Nurun Nabi & Thuy Chu Van & Kabir Suara & Mohammad Jafari & Ashley Dowell & Md. Aminul Islam & Anthony J. Marchese & Jessica Tryner & Md. Farhad Hossain & Thomas J. Rainey , 2018. "Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends," Energies, MDPI, vol. 11(4), pages 1-15, March.
    6. Sarjovaara, Teemu & Alantie, Jussi & Larmi, Martti, 2013. "Ethanol dual-fuel combustion concept on heavy duty engine," Energy, Elsevier, vol. 63(C), pages 76-85.
    7. Bodisco, Timothy & Tröndle, Philipp & Brown, Richard J., 2015. "Inter-cycle variability of ignition delay in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 84(C), pages 186-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodisco, Timothy & Tröndle, Philipp & Brown, Richard J., 2015. "Inter-cycle variability of ignition delay in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 84(C), pages 186-195.
    2. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    3. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    4. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    5. Adnan, R. & Masjuki, H.H. & Mahlia, T.M.I., 2012. "Performance and emission analysis of hydrogen fueled compression ignition engine with variable water injection timing," Energy, Elsevier, vol. 43(1), pages 416-426.
    6. Jamuwa, D.K. & Sharma, D. & Soni, S.L., 2017. "Experimental investigation of performance, exhaust emission and combustion parameters of compression ignition engine with varying ethanol energy fractions," Energy, Elsevier, vol. 127(C), pages 544-557.
    7. Chintala, Venkateswarlu & Subramanian, K.A., 2013. "A CFD (computational fluid dynamics) study for optimization of gas injector orientation for performance improvement of a dual-fuel diesel engine," Energy, Elsevier, vol. 57(C), pages 709-721.
    8. Gong, Chang-Ming & Huang, Kuo & Jia, Jing-Long & Su, Yan & Gao, Qing & Liu, Xun-Jun, 2011. "Regulated emissions from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 36(5), pages 3379-3387.
    9. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    10. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    11. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    12. Chen, Zheng & Liu, Jingping & Han, Zhiyu & Du, Biao & Liu, Yun & Lee, Chiafon, 2013. "Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends," Energy, Elsevier, vol. 55(C), pages 638-646.
    13. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    14. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2018. "Effect of hydrogen fuel flow rate, fuel injection timing and exhaust gas recirculation on the performance of dual fuel engine powered with renewable fuels," Renewable Energy, Elsevier, vol. 126(C), pages 79-94.
    15. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    16. Mahla, S.K. & Dhir, Amit & Gill, Kanwar J.S. & Cho, Haeng Muk & Lim, Hee Chang & Chauhan, Bhupendra Singh, 2018. "Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine," Energy, Elsevier, vol. 152(C), pages 303-312.
    17. Ramos da Costa, Yoge Jerônimo & Barbosa de Lima, Antonio Gilson & Bezerra Filho, Celso Rosendo & de Araujo Lima, Laerte, 2012. "Energetic and exergetic analyses of a dual-fuel diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4651-4660.
    18. Park, Jungsoo & Lee, Kyo Seung & Kim, Min Su & Jung, Dohoy, 2014. "Numerical analysis of a dual-fueled CI (compression ignition) engine using Latin hypercube sampling and multi-objective Pareto optimization," Energy, Elsevier, vol. 70(C), pages 278-287.
    19. Liu, Haifeng & Ma, Guixiang & Hu, Bin & Zheng, Zunqing & Yao, Mingfa, 2018. "Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode," Energy, Elsevier, vol. 145(C), pages 592-602.
    20. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:52:y:2013:i:c:p:55-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.