IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002749.html
   My bibliography  Save this article

Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia

Author

Listed:
  • Krarti, Moncef
  • Aldubyan, Mohammad

Abstract

This paper describes an analysis approach to assess water consumption attributed to electricity generation required to meet the demand for the entire Saudi residential building stock. In addition, the analysis aims at estimating the water consumption reduction due to cost-effective energy retrofit measures for the Saudi housing stock. The analysis estimated that the water consumed annually to generate electricity for the Saudi entire housing stock is 135 MCM representing almost 10% and 4% of the water used by the industrial sector. Moreover, it is found that both electricity generation need and associated water consumption can be reduced by 15.7% when lighting is retrofitted with low-energy fixtures and by 25.8% when high efficiency air conditioning systems are installed for all the existing Saudi housing stocks. For the housing stock located in the Central region with prevalent dry climates, replacing existing air conditioning by evaporative coolers can save 11.1 TWh/a (25.5%) in electricity consumption but increase the water consumption by 36.2 MCM/a (80.6%). A cost-benefit analysis of lighting retrofit is found to be highly cost-effective for both households and the government with payback periods of less than 1 year.

Suggested Citation

  • Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002749
    DOI: 10.1016/j.apenergy.2021.116767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    2. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    3. Kurian, Mathew, 2017. "The water-energy-food nexus," Environmental Science & Policy, Elsevier, vol. 68(C), pages 97-106.
    4. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2017. "Evaluation of building energy efficiency investment options for the Kingdom of Saudi Arabia," Energy, Elsevier, vol. 134(C), pages 595-610.
    6. Bijl, David L. & Bogaart, Patrick W. & Kram, Tom & de Vries, Bert J.M. & van Vuuren, Detlef P., 2016. "Long-term water demand for electricity, industry and households," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 75-86.
    7. Rio Carrillo, Anna Mercè & Frei, Christoph, 2009. "Water: A key resource in energy production," Energy Policy, Elsevier, vol. 37(11), pages 4303-4312, November.
    8. Wan, Liyang & Wang, Can & Cai, Wenjia, 2016. "Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach," Applied Energy, Elsevier, vol. 184(C), pages 26-39.
    9. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    10. Zheng, Xinzhu & Wang, Can & Cai, Wenjia & Kummu, Matti & Varis, Olli, 2016. "The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change," Applied Energy, Elsevier, vol. 171(C), pages 444-455.
    11. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    12. Fthenakis, Vasilis & Kim, Hyung Chul, 2010. "Life-cycle uses of water in U.S. electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2039-2048, September.
    13. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    14. Scherer, Laura & Pfister, Stephan, 2016. "Global water footprint assessment of hydropower," Renewable Energy, Elsevier, vol. 99(C), pages 711-720.
    15. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    16. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2019. "Regional water footprints assessment for hydroelectricity generation in China," Renewable Energy, Elsevier, vol. 138(C), pages 316-325.
    17. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2019. "Energy productivity analysis framework for buildings: a case study of GCC region," Energy, Elsevier, vol. 167(C), pages 1251-1265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakariya Kaneesamkandi & Abdulaziz Almujahid & Basharat Salim & Abdul Sayeed & Waleed Mohammed AlFadda, 2023. "Enhancement of Condenser Performance in Vapor Absorption Refrigeration Systems Operating in Arid Climatic Zones—Selection of Best Option," Energies, MDPI, vol. 16(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    3. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    4. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    5. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    6. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    7. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    8. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    9. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Lu Lin & Yongqin David Chen, 2017. "Evaluation of Future Water Use for Electricity Generation under Different Energy Development Scenarios in China," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    12. Linghao Meng & Jusen Asuka, 2022. "Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    13. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    14. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
    15. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    16. Srinivasan, Shweta & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Mathur, Ritu & Clarke, Leon & Evans, Meredydd & Hejazi, Mohamad & Kanudia, Amit & Koti, Poonam Nagar & Liu, Bo & Parik, 2018. "Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation," Applied Energy, Elsevier, vol. 210(C), pages 673-684.
    17. Gonzalez Sanchez, Rocio & Seliger, Roman & Fahl, Fernando & De Felice, Luca & Ouarda, Taha B.M.J. & Farinosi, Fabio, 2020. "Freshwater use of the energy sector in Africa," Applied Energy, Elsevier, vol. 270(C).
    18. Radwan A. Almasri & Abdullah A. Alardhi & Saad Dilshad, 2021. "Investigating the Impact of Integration the Saudi Code of Energy Conservation with the Solar PV Systems in Residential Buildings," Sustainability, MDPI, vol. 13(6), pages 1-30, March.
    19. Sandra Venghaus & Carolin Märker & Sophia Dieken & Florian Siekmann, 2019. "Linking Environmental Policy Integration and the Water-Energy-Land-(Food-)Nexus: A Review of the European Union’s Energy, Water, and Agricultural Policies," Energies, MDPI, vol. 12(23), pages 1-16, November.
    20. Wahhaj Ahmed & Ayman Alazazmeh & Muhammad Asif, 2022. "Energy and Water Saving Potential in Commercial Buildings: A Retrofit Case Study," Sustainability, MDPI, vol. 15(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.