IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v318y2015icp157-167.html
   My bibliography  Save this article

A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress

Author

Listed:
  • White, David J.
  • Feng, Kuishuang
  • Sun, Laixiang
  • Hubacek, Klaus

Abstract

Water, in particular water scarcity, is the fulcrum of China's dilemma in pursuing industrialization, income growth, modernization, and national food security. The Haihe River Basin (HRB) is an extremely water stressed hydrological system, which encompasses the two megacities of Beijing and Tianjin, and is experiencing the detrimental impacts of the recent unprecedented economic growth on its scarce water resources. We applied an integrated multi-regional input–output (MRIO) hydro-economic model combined with the water scarcity index to analyze consumption water footprint (WF) and embedded or virtual water flows in inter-regional trade in the HRB and their impacts on hydrosystems (scarcity water footprint). The study shows that in 2007, the WF of the HRB was approximately 37.1billionm3 (277m3 per capita), of which the ‘scarcity’ WF was approximately 26.7billionm3 or 72% of the total WF. In line with its high level of water scarcity, the HRB's net import level of virtual water was 11.3billionm3 (84m3 per capita), with the total import of 25.9billionm3 and total export of 14.6billionm3. In contrast, the HRB's net import level of virtual scarce water is at a relatively moderate scale of 1.8billionm3, with the import of 15.7billionm3 and export of 13.9billionm3. While it is highly desirable to import more virtual water from water rich regions, a caution is needed in importing virtual scarce water because the latter will lead to greater water stress in other water scarce regions. Accounting for water scarcity in the WF analysis increases the effectiveness of the analysis and generates more valuable and accurate information for water management and planning.

Suggested Citation

  • White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.
  • Handle: RePEc:eee:ecomod:v:318:y:2015:i:c:p:157-167
    DOI: 10.1016/j.ecolmodel.2015.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015000368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    2. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    3. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    4. Klaus Hubacek & Kuishuang Feng & Bin Chen, 2011. "Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China," Energies, MDPI, vol. 5(1), pages 1-10, December.
    5. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    6. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruijin Du & Qi Wu & Ziwei Nan & Gaogao Dong & Lixin Tian & Feifan Wu, 2022. "Natural Gas Scarcity Risk in the Belt and Road Economies Based on Complex Network and Multi-Regional Input-Output Analysis," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    2. Oluwafisayo Alabi & Max Mundy & Kim Swales & Karen Turner, 2016. "Physical water use and water sector activity in environmental input-output analysis," Working Papers 1612, University of Strathclyde Business School, Department of Economics.
    3. Na Qiao & Lan Fang & Lan Mu, 2020. "Evaluating the impacts of water resources technology progress on development and economic growth over the Northwest, China," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-14, March.
    4. Chen Cao & Xiaohan Lu & Xuyong Li, 2019. "Risk Assessment and Pressure Response Analysis of the Water Footprint of Agriculture and Livestock: A Case Study of the Beijing–Tianjin–Hebei Region in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    5. Feng, Le & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Dynamic forecasting of agricultural water footprint based on Markov Chain-a case study of the Heihe River Basin," Ecological Modelling, Elsevier, vol. 353(C), pages 150-157.
    6. Eamen, Leila & Brouwer, Roy & Razavi, Saman, 2020. "The economic impacts of water supply restrictions due to climate and policy change: A transboundary river basin supply-side input-output analysis," Ecological Economics, Elsevier, vol. 172(C).
    7. Gino Sturla & Lorenzo Ciulla & Benedetto Rocchi, 2022. "Italy's Volumetric, Scarce and Social-scarce water footprint: a Hydro Economic Input-Output Analysis," Working Papers - Economics wp2022_17.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    8. Sun, Yuanyuan & Mao, Xianqiang & Liu, Gengyuan & Yin, Xinan & Zhao, Yanwei, 2020. "Modelling the effects of energy taxes on ecological footprint transfers in China's foreign trade," Ecological Modelling, Elsevier, vol. 431(C).
    9. Wu Xie & Shuai Hu & Fangyi Li & Xin Cao & Zhipeng Tang, 2020. "Carbon and Water Footprints of Tibet: Spatial Pattern and Trend Analysis," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    10. Xuhui Ding & Zhu Fu & Hongwen Jia, 2019. "Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    11. Xiuli Liu & Rui Xiong & Pibin Guo & Lei Nie & Qinqin Shi & Wentao Li & Jing Cui, 2022. "Virtual Water Flow Pattern in the Yellow River Basin, China: An Analysis Based on a Multiregional Input–Output Model," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    12. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    13. Willa Paterson & Richard Rushforth & Benjamin L. Ruddell & Megan Konar & Ikechukwu C. Ahams & Jorge Gironás & Ana Mijic & Alfonso Mejia, 2015. "Water Footprint of Cities: A Review and Suggestions for Future Research," Sustainability, MDPI, vol. 7(7), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    2. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    3. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    4. Willa Paterson & Richard Rushforth & Benjamin L. Ruddell & Megan Konar & Ikechukwu C. Ahams & Jorge Gironás & Ana Mijic & Alfonso Mejia, 2015. "Water Footprint of Cities: A Review and Suggestions for Future Research," Sustainability, MDPI, vol. 7(7), pages 1-30, June.
    5. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    6. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    7. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    8. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    9. Bae, Jinwon & Dall'erba, Sandy, 2018. "Crop Production, Export of Virtual Water and Water-saving Strategies in Arizona," Ecological Economics, Elsevier, vol. 146(C), pages 148-156.
    10. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    11. A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
    12. Xin’er Ning & Yanjun Zhang & Hongbo Xu & Wenxun Dong & Yuanxin Song & Liping Zhang, 2023. "Inter-Industry Transfer of Intermediate Virtual Water Scarcity Risk: The Case of China," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    13. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    14. Alexandros Gkatsikos & Konstadinos Mattas, 2021. "The Paradox of the Virtual Water Trade Balance in the Mediterranean Region," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    15. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    16. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    17. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    18. Guiliang Tian & Xiaosheng Han & Chen Zhang & Jiaojiao Li & Jining Liu, 2020. "Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    19. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    20. Valeria Cosmo & Marie Hyland & Maria Llop, 2014. "Disentangling Water Usage in the European Union: A Decomposition Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1463-1479, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:318:y:2015:i:c:p:157-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.