Advanced Search
MyIDEAS: Login

Seasonality, Cycles and Unit Roots

Contents:

Author Info

  • Mickael Salabasis
  • Sune Karlsson

Abstract

Inference on ordinary unit roots, seasonal unit roots, seasonality and business cycles are fundamental issues in time series econometrics. This paper proposes a novel approach to inference on these features by focusing directly on the roots of the autoregressive polynomial rather than taking the standard route via the autoregressive coefficients. Allowing for unknown lag lengths and adopting a Bayesian approach we obtain posterior probabilities for the presence of these features in the data as well as the usual posteriors for the parameters of the model

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repec.org/esAUSM04/up.21757.1077876592.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Econometric Society in its series Econometric Society 2004 Australasian Meetings with number 268.

as in new window
Length:
Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:ecm:ausm04:268

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/pastmeetings.asp
More information through EDIRC

Related research

Keywords: Bayesian model averaging; autoregressive models;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hylleberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal, Integration And Cointegration," Papers 6-88-2, Pennsylvania State - Department of Economics.
  2. Franses, Philip Hans & Hoek, Henk & Paap, Richard, 1997. "Bayesian analysis of seasonal unit roots and seasonal mean shifts," Journal of Econometrics, Elsevier, vol. 78(2), pages 359-380, June.
  3. Schotman, Peter C., 1994. "Priors For The Ar(1) Model: Parameterization Issues and Time Series Considerations," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 579-595, August.
  4. G. Huerta & M. West, 1999. "Priors and component structures in autoregressive time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 881-899.
  5. DeJong, David N. & Whiteman, Charles H., 1991. "Reconsidering 'trends and random walks in macroeconomic time series'," Journal of Monetary Economics, Elsevier, vol. 28(2), pages 221-254, October.
  6. DeJong, David N & Whiteman, Charles H, 1991. "The Temporal Stability of Dividends and Stock Prices: Evidence from the Likelihood Function," American Economic Review, American Economic Association, vol. 81(3), pages 600-617, June.
  7. Lubrano, Michel, 1995. "Testing for unit roots in a Bayesian framework," Journal of Econometrics, Elsevier, vol. 69(1), pages 81-109, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2007. "A simple, robust and powerful test of the trend hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 1302-1330, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:268. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.