Advanced Search
MyIDEAS: Login

Correlated Equilibrium in Games with Incomplete Information

Contents:

Author Info

Abstract

We define a notion of correlated equilibrium for games with incomplete information in a general setting with finite players, finite actions, and finite states, which we call Bayes correlated equilibrium. The set of Bayes correlated equilibria of a fixed incomplete information game equals the set of probability distributions over actions, states and types that might arise in any Bayes Nash equilibrium where players observed additional information. We show that more information always shrinks the set of Bayes correlated equilibria.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d18a/d1822.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1822.

as in new window
Length: 61 pages
Date of creation: Oct 2011
Date of revision:
Handle: RePEc:cwl:cwldpp:1822

Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Correlated equilibrium; Incomplete information; Robust predictions; Information structure;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Forges, Francoise & Koessler, Frederic, 2005. "Communication equilibria with partially verifiable types," Journal of Mathematical Economics, Elsevier, vol. 41(7), pages 793-811, November.
  2. Andrew Caplin & Daniel Martin, 2011. "A Testable Theory of Imperfect Perception," NBER Working Papers 17163, National Bureau of Economic Research, Inc.
  3. Jeffrey C. Ely & Marcin Peski, 2005. "Hierarchies of Belief and Interim Rationalizability," Levine's Bibliography 122247000000000817, UCLA Department of Economics.
  4. Dirk Bergemann & Stephen Morris, 2007. "Belief Free Incomplete Information Games," Cowles Foundation Discussion Papers 1629, Cowles Foundation for Research in Economics, Yale University.
  5. Emir Kamenica & Matthew Gentzkow, 2009. "Bayesian Persuasion," NBER Working Papers 15540, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Blume, Andreas, 2012. "A class of strategy-correlated equilibria in sender–receiver games," Games and Economic Behavior, Elsevier, vol. 75(2), pages 510-517.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1822. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.