Advanced Search
MyIDEAS: Login

Bootstrap forecast of multivariate VAR models without using the backward representation

Contents:

Author Info

  • Lorenzo Pascual
  • Esther Ruiz

    ()

  • Diego Fresoli

    ()

Abstract

In this paper, we show how to simplify the construction of bootstrap prediction densities in multivariate VAR models by avoiding the backward representation. Bootstrap prediction densities are attractive because they incorporate the parameter uncertainty a any particular assumption about the error distribution. What is more, the construction of densities for more than one-step unknown asymptotically. The main advantage of the new simple without loosing the good performance of bootstrap procedures. Furthermore, by avoiding a backward representation, its asymptotic validity can be proved without relying on the assumption of Gaussian errors as proposed in this paper can be implemented to obtain prediction densities in models without a backward representation as, for example, models with MA components or GARCH disturbances. By comparing the finite sample performance of the proposed procedure with those of alternatives, we show that nothing is lost when using it. Finally, we implement the procedure to obtain prediction regions for US quarterly future inflation, unemployment and GDP growth

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://e-archivo.uc3m.es/bitstream/10016/12411/1/ws113426.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws113426.

as in new window
Length:
Date of creation: Oct 2011
Date of revision:
Handle: RePEc:cte:wsrepe:ws113426

Contact details of provider:
Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
More information through EDIRC

Related research

Keywords: Non-Gaussian VAR models; Prediction cubes; Prediction density; Prediction regions; Prediction ellipsoids; Resampling methods;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
  2. Kung-Sik Chan & Lop-Hing Ho & Howell Tong, 2006. "A note on time-reversibility of multivariate linear processes," Biometrika, Biometrika Trust, vol. 93(1), pages 221-227, March.
  3. Gunnar Bårdsen & Helmut Lütkepohl, 2009. "Forecasting Levels of log Variables in Vector Autoregressions," Working Paper Series 10409, Department of Economics, Norwegian University of Science and Technology.
  4. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2001. "Bootstrap Prediction Intervals For Power-Transformed Time Series," Statistics and Econometrics Working Papers ws010503, Universidad Carlos III, Departamento de Estadística y Econometría.
  5. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
  6. repec:att:wimass:9417 is not listed on IDEAS
  7. Kenneth D. West & Michael W. McCracken, 1998. "Regression-Based Tests of Predictive Ability," NBER Technical Working Papers 0226, National Bureau of Economic Research, Inc.
  8. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
  9. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
  10. Eklund, Bruno, 2005. "Estimating confidence regions over bounded domains," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 349-360, April.
  11. Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
  12. Teräsvirta, Timo & Zhao, Zhenfang, 2007. "Stylized Facts of Return Series, Robust Estimates, and Three Popular Models of Volatility," Working Paper Series in Economics and Finance 662, Stockholm School of Economics, revised 05 Jun 2007.
  13. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-42, October.
  14. Chow, Hwee Kwan & Choy, Keen Meng, 2006. "Forecasting the global electronics cycle with leading indicators: A Bayesian VAR approach," International Journal of Forecasting, Elsevier, vol. 22(2), pages 301-315.
  15. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
  16. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454, October.
  17. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  18. Gomez, Nicolas & Guerrero, Victor M., 2006. "Restricted forecasting with VAR models: An analysis of a test for joint compatibility between restrictions and forecasts," International Journal of Forecasting, Elsevier, vol. 22(4), pages 751-770.
  19. Simkins, Scott, 1995. "Forecasting with vector autoregressive (VAR) models subject to business cycle restrictions," International Journal of Forecasting, Elsevier, vol. 11(4), pages 569-583, December.
  20. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
  21. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
  22. Kim, Jae H, 2001. "Bootstrap-after-Bootstrap Prediction Intervals for Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 117-28, January.
  23. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
  24. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Anna Staszewska-Bystrova, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 233(5-6), pages 680-690, October.
  2. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws113426. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.