Advanced Search
MyIDEAS: Login

Constructing narrowest pathwise bootstrap prediction bands using threshold accepting

Contents:

Author Info

  • Staszewska-Bystrova, Anna
  • Winker, Peter

Abstract

Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0169207012001197
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 29 (2013)
Issue (Month): 2 ()
Pages: 221-233

as in new window
Handle: RePEc:eee:intfor:v:29:y:2013:i:2:p:221-233

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords: Bootstrapping; Forecast path; Prediction bands; Threshold accepting; Vector autoregressive models;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
  2. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
  3. Lorenzo Pascual & Esther Ruiz & Diego Fresoli, 2011. "Bootstrap forecast of multivariate VAR models without using the backward representation," Statistics and Econometrics Working Papers ws113426, Universidad Carlos III, Departamento de Estadística y Econometría.
  4. Kilian, Lutz, 2001. "Impulse Response Analysis in Vector Autoregressions with Unknown Lag Order," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(3), pages 161-79, April.
  5. Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
  6. Jordà, Òscar & Marcellino, Massimiliano, 2008. "Path Forecast Evaluation," CEPR Discussion Papers 7009, C.E.P.R. Discussion Papers.
  7. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
  8. Matei Demetrescu & Uwe Hassler & Vladimir Kuzin, 2011. "Pitfalls of post-model-selection testing: experimental quantification," Empirical Economics, Springer, vol. 40(2), pages 359-372, April.
  9. Busch, Ulrike & Scharnagl, Michael & Scheithauer, Jan, 2010. "Loan supply in Germany during the financial crisis," Discussion Paper Series 1: Economic Studies 2010,05, Deutsche Bundesbank, Research Centre.
  10. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2001. "Effects of parameter estimation on prediction densities: a bootstrap approach," International Journal of Forecasting, Elsevier, vol. 17(1), pages 83-103.
  11. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
  12. Peter Winker & Dietmar Maringer, 2009. "The convergence of estimators based on heuristics: theory and application to a GARCH model," Computational Statistics, Springer, vol. 24(3), pages 533-550, August.
  13. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
  14. Fitzenberger, Bernd & Winker, Peter, 2007. "Improving the computation of censored quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 88-108, September.
  15. Demetrescu, Matei & Kuzin, Vladimir & Hassler, Uwe, 2008. "Long Memory Testing In The Time Domain," Econometric Theory, Cambridge University Press, vol. 24(01), pages 176-215, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2013. "Comparison of Methods for Constructing Joint Confidence Bands for Impulse Response Functions," Discussion Papers of DIW Berlin 1292, DIW Berlin, German Institute for Economic Research.
  2. Anna Staszewska-Bystrova, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 233(5-6), pages 680-690, October.
  3. Òscar Jordá & Malte Knuppel & Massimiliano Marcellino, 2012. "Empirical simultaneous prediction regions for path-forecasts," Working Paper Series 2012-05, Federal Reserve Bank of San Francisco.
  4. Helmut Luetkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," CESifo Working Paper Series 4634, CESifo Group Munich.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:29:y:2013:i:2:p:221-233. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.