IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i2p279-293.html
   My bibliography  Save this article

Bootstrap VAR forecasts: The effect of model uncertainties

Author

Listed:
  • Diego Fresoli

Abstract

VAR models are popular to forecast macroeconomic time series. However, the model, the parameters, and the error distribution are rarely known without uncertainty, so bootstrap methods are applied to deal with these sources of uncertainties. In this paper, the performance of the popular forecast Bonferroni cubes based on the Gaussian method and variants of the bootstrap procedure that incorporate error distribution, parameter uncertainty, bias correction, and lag order uncertainty are compared. Monte Carlo simulations suggest that the best performance of bootstrap cubes are obtained when the parameter uncertainty is considered, being the bias and model uncertainties important for long‐run forecast regions in persistent VAR models. Similar conclusions are found in an empirical application based on a four variate system containing US monthly percent changes of the industrial production index, the S&P500 stock market index, its dividend yield, and the unemployment rate.

Suggested Citation

  • Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:2:p:279-293
    DOI: 10.1002/for.2809
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2809
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    2. Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
    3. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    4. Schreiber, Sven & Soldatenkova, Natalia, 2016. "Anticipating business-cycle turning points in real time using density forecasts from a VAR," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 166-187.
    5. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    6. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    7. Campbell, Sean D. & Diebold, Francis X., 2009. "Stock Returns and Expected Business Conditions: Half a Century of Direct Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 266-278.
    8. Stefan Bruder & Michael Wolf, 2018. "Balanced Bootstrap Joint Confidence Bands for Structural Impulse Response Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 641-664, September.
    9. Lawford, Steve & Stamatogiannis, Michalis P., 2009. "The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators," Journal of Econometrics, Elsevier, vol. 148(2), pages 124-130, February.
    10. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    11. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    12. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    13. Camilleri, Silvio John & Scicluna, Nicolanne & Bai, Ye, 2019. "Do stock markets lead or lag macroeconomic variables? Evidence from select European countries," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 170-186.
    14. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    15. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2015. "Confidence Bands for Impulse Responses: Bonferroni vs. Wald," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(6), pages 800-821, December.
    16. Matteo Grigoletto, 2005. "Bootstrap prediction regions for multivariate autoregressive processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(2), pages 179-207, November.
    17. Anna Staszewska-Bystrova & Peter Winker, 2014. "Measuring Forecast Uncertainty of Corporate Bond Spreads by Bonferroni-Type Prediction Bands," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(2), pages 89-104, June.
    18. Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
    19. Schorfheide, Frank, 2005. "VAR forecasting under misspecification," Journal of Econometrics, Elsevier, vol. 128(1), pages 99-136, September.
    20. Ulrich K. Müller & James H. Stock, 2011. "Forecasts in a Slightly Misspecified Finite Order VAR," NBER Working Papers 16714, National Bureau of Economic Research, Inc.
    21. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
    22. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    23. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004. "Bootstrap predictive inference for ARIMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
    24. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
    25. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    26. Fama, Eugene F, 1990. "Stock Returns, Expected Returns, and Real Activity," Journal of Finance, American Finance Association, vol. 45(4), pages 1089-1108, September.
    27. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    28. Garratt A. & Lee K. & Pesaran M.H. & Shin Y., 2003. "Forecast Uncertainties in Macroeconomic Modeling: An Application to the U.K. Economy," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 829-838, January.
    29. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    30. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    31. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    32. Giacomini, Raffaella & Ragusa, Giuseppe, 2014. "Theory-coherent forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 145-155.
    33. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
    34. Karim M. Abadir & Kaddour Hadri & Elias Tzavalis, 1999. "The Influence of VAR Dimensions on Estimator Biases," Econometrica, Econometric Society, vol. 67(1), pages 163-182, January.
    35. Lutz Kilian, 1998. "Accounting for Lag Order Uncertainty in Autoregressions: the Endogenous Lag Order Bootstrap Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(5), pages 531-548, September.
    36. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    37. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    2. Gonçalves Mazzeu, Joao Henrique & Ruiz Ortega, Esther & Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    4. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.
    5. Pascual, Lorenzo & Ruiz Ortega, Esther & Fresoli, Diego Eduardo, 2011. "Bootstrap forecast of multivariate VAR models without using the backward representation," DES - Working Papers. Statistics and Econometrics. WS ws113426, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Anna Staszewska-Bystrova, 2009. "Bootstrap Confidence Bands for Forecast Paths," Working Papers 024, COMISEF.
    7. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    8. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    9. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    10. Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
    11. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    12. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    13. João Henrique Gonçalves Mazzeu & Esther Ruiz & Helena Veiga, 2018. "Uncertainty And Density Forecasts Of Arma Models: Comparison Of Asymptotic, Bayesian, And Bootstrap Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 388-419, April.
    14. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Dag Kolsrud, 2015. "A Time‐Simultaneous Prediction Box for a Multivariate Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 675-693, December.
    17. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
    18. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    19. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    20. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:2:p:279-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.