Advanced Search
MyIDEAS: Login

Wavelet-based detection of outliers in volatility models

Contents:

Author Info

  • Aurea Grané

    ()

  • Helena Veiga

    ()

Abstract

Outliers in financial data can lead to model parameter estimation biases, invalid inferences and poor volatility forecasts. Therefore, their detection and correction should be taken seriously when modeling financial data. This paper focuses on these issues and proposes a general detection and correction method based on wavelets that can be applied to a large class of volatility models. The effectiveness of our proposal is tested by an intensive Monte Carlo study for six well known volatility models and compared to alternative proposals in the literature, before applying it to three daily stock market indexes. The Monte Carlo experiments show that our method is both very effective in detecting isolated outliers and outlier patches and much more reliable than other wavelet-based procedures since it detects a significant smaller number of false outliers.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://e-archivo.uc3m.es/bitstream/10016/3507/5/ws090403.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws090403.

as in new window
Length:
Date of creation: Jan 2009
Date of revision:
Handle: RePEc:cte:wsrepe:ws090403

Contact details of provider:
Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
More information through EDIRC

Related research

Keywords: Outliers; Outlier patches; Volatility models; Wavelets;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jurgen A. Doornik & Marius Ooms, 2005. "Outlier Detection in GARCH Models," Economics Papers 2005-W24, Economics Group, Nuffield College, University of Oxford.
  2. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
  3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  4. Kiefer, Nicholas M & Salmon, Mark, 1982. "Testing Normality in Econometric Models," The Warwick Economics Research Paper Series (TWERPS) 216, University of Warwick, Department of Economics.
  5. van Dijk, D.J.C. & Franses, Ph.H.B.F. & Lucas, A., 1996. "Testing for ARCH in the Presence of Additive Outliers," Econometric Institute Research Papers EI 9659-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  6. Seth A. Greenblatt, 1994. "Wavelets in Econometrics: An Application to Outlier Testing," Econometrics 9410001, EconWPA.
  7. Galeano, Pedro & Pena, Daniel & Tsay, Ruey S., 2006. "Outlier Detection in Multivariate Time Series by Projection Pursuit," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 654-669, June.
  8. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
  9. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, 07.
  10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  11. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Li, Yushu & Reese, Simon, 2014. "Wavelet improvement in turning point detection using a Hidden Markov Model," Discussion Papers 2014/10, Department of Business and Management Science, Norwegian School of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws090403. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.