IDEAS home Printed from https://ideas.repec.org/p/bcc/wpaper/2013-13.html
   My bibliography  Save this paper

Time and tide wait for no man: pioneers and laggards in the deployment of CCS

Author

Listed:
  • Dirk Rübbelke
  • Stefan Vögele

Abstract

In Europe the ambitions of individual countries to deploy carbon capture and storage (CCS) technologies are diverse. Reasons for this are, amongst other things, the heterogeneity of national electricity generation systems and storage capacities and the differences in the public perception of these technologies. In this analysis we investigate the consequences of partial deployment of CCS, i.e. we consider a situation where some European countries (the “pioneers†) actively deploy CCS technologies, while others (the “laggards†) do not use CCS. Our study focuses on the question whether it pays throughout to be a pioneer and whether laggards will generally be disadvantaged. In our assessment, we take into account impacts on consumers affected from rising electricity prices, electricity suppliers whose profits are influenced by changes in both electricity prices and sales, and international trade-flow changes (modifications in European electricity import/export patterns).

Suggested Citation

  • Dirk Rübbelke & Stefan Vögele, 2013. "Time and tide wait for no man: pioneers and laggards in the deployment of CCS," Working Papers 2013-13, BC3.
  • Handle: RePEc:bcc:wpaper:2013-13
    as

    Download full text from publisher

    File URL: http://www.bc3research.org/index.php?option=com_wpapers&task=downpubli&iddoc=71&repec=1&Itemid=279
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. World Bank, 2011. "Transition to a Low-Emissions Economy in Poland," World Bank Publications - Reports 27419, The World Bank Group.
    2. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    3. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    4. Dirk Rübbelke & Stefan Vögele, 2013. "Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses?," Climatic Change, Springer, vol. 116(2), pages 191-206, January.
    5. Rübbelke, Dirk & Vögele, Stefan, 2013. "Effects of carbon dioxide capture and storage in Germany on European electricity exchange and welfare," Energy Policy, Elsevier, vol. 59(C), pages 582-588.
    6. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    7. Till Requate, 2005. "Timing and Commitment of Environmental Policy, Adoption of New Technology, and Repercussions on R&D," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 175-199, June.
    8. van Soest, Daan P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Resource and Energy Economics, Elsevier, vol. 27(3), pages 235-247, October.
    9. Shackley, Simon & Waterman, Holly & Godfroij, Per & Reiner, David & Anderson, Jason & Draxlbauer, Kathy & Flach, Todd, 2007. "Stakeholder perceptions of CO2 capture and storage in Europe: Results from a survey," Energy Policy, Elsevier, vol. 35(10), pages 5091-5108, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    2. Timo Goeschl & Grischa Perino, 2017. "The Climate Policy Hold‐Up: Green Technologies, Intellectual Property Rights, and the Abatement Incentives of International Agreements," Scandinavian Journal of Economics, Wiley Blackwell, vol. 119(3), pages 709-732, July.
    3. Zeng, Bingxin & Zhu, Lei & Yao, Xing, 2020. "Policy choice for end-of-pipe abatement technology adoption under technological uncertainty," Economic Modelling, Elsevier, vol. 87(C), pages 121-130.
    4. Vögele, Stefan & Rübbelke, Dirk & Mayer, Philip & Kuckshinrichs, Wilhelm, 2018. "Germany’s “No” to carbon capture and storage: Just a question of lacking acceptance?," Applied Energy, Elsevier, vol. 214(C), pages 205-218.
    5. Luis M. Abadie & Ibon Galarraga & Dirk Rübbelke, 2013. "Evaluation of Two Alternative Carbon Capture and Storage Technologies: A Stochastic Model," Working Papers 2013-07, BC3.
    6. Hattori, Keisuke, 2017. "Optimal combination of innovation and environmental policies under technology licensing," Economic Modelling, Elsevier, vol. 64(C), pages 601-609.
    7. Idrissa Sibailly, 2013. "On licensing and diffusion of clean technologies in oligopoly," Working Papers hal-00911453, HAL.
    8. Wenjun Sun & Naoto Jinji, 2014. "The Effects of Emission Taxes on Pollution through the Diffusion of Clean Technology:The Presence of Green Consumers," Discussion papers e-14-014, Graduate School of Economics Project Center, Kyoto University.
    9. Gil-Moltó, Maria José & Varvarigos, Dimitrios, 2013. "Emission taxes and the adoption of cleaner technologies: The case of environmentally conscious consumers," Resource and Energy Economics, Elsevier, vol. 35(4), pages 486-504.
    10. Vögele, Stefan & Rübbelke, Dirk, 2013. "Decisions on investments in photovoltaics and carbon capture and storage: A comparison between two different greenhouse gas control strategies," Energy, Elsevier, vol. 62(C), pages 385-392.
    11. Alfred Endres & Tim Friehe & Bianca Rundshagen, 2020. "Diffusion and adoption of advanced emission abatement technology induced by permit trading," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(5), pages 1313-1337, September.
    12. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    13. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    14. Ruiz Estrada, Mario Arturo, 2013. "The Macroeconomics evaluation of Climate Change Model (MECC-Model): The case Study of China," MPRA Paper 49158, University Library of Munich, Germany, revised 18 Aug 2013.
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    17. Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
    18. David, Maia & Nimubona, Alain-Désiré & Sinclair-Desgagné, Bernard, 2011. "Emission taxes and the market for abatement goods and services," Resource and Energy Economics, Elsevier, vol. 33(1), pages 179-191, January.
    19. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    20. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.

    More about this item

    Keywords

    Carbon capture and storage (CCS); electricity generation; environmental technology; load dispatch approach.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcc:wpaper:2013-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergio Henrique Faria (email available below). General contact details of provider: https://www.bc3research.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.