IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.04898.html
   My bibliography  Save this paper

Net gains in evolutionary dynamics: A unifying and intuitive approach to dynamic stability

Author

Listed:
  • Dai Zusai

Abstract

Static stability in economic models means negative incentives for deviation from equilibrium strategies, which we expect to assure a return to equilibrium, i.e., dynamic stability, as long as agents respond to incentives. There have been many attempts to prove this link, especially in evolutionary game theory, yielding both negative and positive results. This paper presents a universal and intuitive approach to this link. We prove that static stability assures dynamic stability if agents' choices of switching strategies are rationalizable by introducing costs and constraints in those switching decisions. This idea guides us to define \textit{net }gains from switches as the payoff improvement after deducting the costs. Under rationalizable dynamics, an agent maximizes the expected net gain subject to the constraints. We prove that the aggregate maximized expected net gain works as a Lyapunov function. It also explains reasons behind the known negative results. While our analysis here is confined to myopic evolutionary dynamics in population games, our approach is applicable to more complex situations.

Suggested Citation

  • Dai Zusai, 2018. "Net gains in evolutionary dynamics: A unifying and intuitive approach to dynamic stability," Papers 1805.04898, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:1805.04898
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.04898
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bomze Immanuel M. & Weibull Jorgen W., 1995. "Does Neutral Stability Imply Lyapunov Stability?," Games and Economic Behavior, Elsevier, vol. 11(2), pages 173-192, November.
    2. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    3. Ingela Alger & Jörgen W. Weibull, 2013. "Homo Moralis—Preference Evolution Under Incomplete Information and Assortative Matching," Econometrica, Econometric Society, vol. 81(6), pages 2269-2302, November.
    4. Takako Fujiwara-Greve & Masahiro Okuno-Fujiwara, 2009. "Voluntarily Separable Repeated Prisoner's Dilemma," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 993-1021.
    5. Sandholm, William H. & DokumacI, Emin & Lahkar, Ratul, 2008. "The projection dynamic and the replicator dynamic," Games and Economic Behavior, Elsevier, vol. 64(2), pages 666-683, November.
    6. Dai Zusai, 2013. "Tempered Best Response Dynamics," DETU Working Papers 1301, Department of Economics, Temple University.
    7. Sawa, Ryoji & Zusai, Dai, 2014. "Evolutionary imitative dynamics with population-varying aspiration levels," Journal of Economic Theory, Elsevier, vol. 154(C), pages 562-577.
    8. Anna Nagurney & Ding Zhang, 1997. "Projected Dynamical Systems in the Formulation, Stability Analysis, and Computation of Fixed-Demand Traffic Network Equilibria," Transportation Science, INFORMS, vol. 31(2), pages 147-158, May.
    9. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    10. D. Zhang & A. Nagurney, 1997. "Formulation, Stability, and Computation of Traffic Network Equilibria as Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 417-444, May.
    11. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    12. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    13. Eddie Dekel & Jeffrey C. Ely & Okan Yilankaya, 2007. "Evolution of Preferences -super-1," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 685-704.
    14. Cressman, R., 1997. "Local stability of smooth selection dynamics for normal form games," Mathematical Social Sciences, Elsevier, vol. 34(1), pages 1-19, August.
    15. Michael J. Fox & Jeff S. Shamma, 2013. "Population Games, Stable Games, and Passivity," Games, MDPI, vol. 4(4), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    2. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    3. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    5. Heller, Yuval & Mohlin, Erik, 2019. "Coevolution of deception and preferences: Darwin and Nash meet Machiavelli," Games and Economic Behavior, Elsevier, vol. 113(C), pages 223-247.
    6. Marc Harper & Dashiell Fryer, 2015. "Lyapunov Functions for Time-Scale Dynamics on Riemannian Geometries of the Simplex," Dynamic Games and Applications, Springer, vol. 5(3), pages 318-333, September.
    7. Sylvain Sorin & Cheng Wan, 2016. "Finite composite games: Equilibria and dynamics," Post-Print hal-02885860, HAL.
    8. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    9. Sawa, Ryoji & Zusai, Dai, 2019. "Evolutionary dynamics in multitasking environments," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 288-308.
    10. Sylvain Sorin, 2023. "Continuous Time Learning Algorithms in Optimization and Game Theory," Dynamic Games and Applications, Springer, vol. 13(1), pages 3-24, March.
    11. Jacquot, Paulin & Wan, Cheng, 2022. "Nonatomic aggregative games with infinitely many types," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1149-1165.
    12. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    13. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    14. Peeta, Srinivas, 2016. "A marginal utility day-to-day traffic evolution model based on one-step strategic thinkingAuthor-Name: He, Xiaozheng," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 237-255.
    15. Mohlin, Erik, 2012. "Evolution of theories of mind," Games and Economic Behavior, Elsevier, vol. 75(1), pages 299-318.
    16. Sivan Frenkel & Yuval Heller & Roee Teper, 2018. "The Endowment Effect As Blessing," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(3), pages 1159-1186, August.
    17. Newton, Jonathan, 2017. "Shared intentions: The evolution of collaboration," Games and Economic Behavior, Elsevier, vol. 104(C), pages 517-534.
    18. Lahkar, Ratul, 2019. "Elimination of non-individualistic preferences in large population aggregative games," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 150-165.
    19. Dai Zusai, 2018. "Evolutionary dynamics in heterogeneous populations: a general framework for an arbitrary type distribution," Papers 1805.04897, arXiv.org, revised May 2019.
    20. Roee Teper, 2014. "The Endowment Effect as a Blessing," Working Paper 5862, Department of Economics, University of Pittsburgh.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.04898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.