IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v67y2009i2p708-719.html
   My bibliography  Save this article

The target projection dynamic

Author

Listed:
  • Tsakas, Elias
  • Voorneveld, Mark

Abstract

We study the target projection dynamic, a model of learning in normal form games. The dynamic is given a microeconomic foundation in terms of myopic optimization under control costs due to a certain status-quo bias. We establish a number of desirable properties of the dynamic: existence, uniqueness and continuity of solution trajectories, Nash stationarity, positive correlation with payoffs, and innovation. Sufficient conditions are provided under which strictly dominated strategies are wiped out. Finally, some stability results are provided for special classes of games.

Suggested Citation

  • Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
  • Handle: RePEc:eee:gamebe:v:67:y:2009:i:2:p:708-719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(09)00014-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    3. Sandholm, William H. & DokumacI, Emin & Lahkar, Ratul, 2008. "The projection dynamic and the replicator dynamic," Games and Economic Behavior, Elsevier, vol. 64(2), pages 666-683, November.
    4. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    5. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    6. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    7. Anna Nagurney & Ding Zhang, 1997. "Projected Dynamical Systems in the Formulation, Stability Analysis, and Computation of Fixed-Demand Traffic Network Equilibria," Transportation Science, INFORMS, vol. 31(2), pages 147-158, May.
    8. Mark Voorneveld, 2006. "Probabilistic Choice in Games: Properties of Rosenthal’s t-Solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 105-121, April.
    9. Mattsson, Lars-Goran & Weibull, Jorgen W., 2002. "Probabilistic choice and procedurally bounded rationality," Games and Economic Behavior, Elsevier, vol. 41(1), pages 61-78, October.
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    11. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    12. Sandholm, William H., 2005. "Excess payoff dynamics and other well-behaved evolutionary dynamics," Journal of Economic Theory, Elsevier, vol. 124(2), pages 149-170, October.
    13. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    14. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    15. D. Zhang & A. Nagurney, 1997. "Formulation, Stability, and Computation of Traffic Network Equilibria as Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 417-444, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    2. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    3. Sylvain Sorin, 2023. "Continuous Time Learning Algorithms in Optimization and Game Theory," Dynamic Games and Applications, Springer, vol. 13(1), pages 3-24, March.
    4. Reinoud Joosten & Berend Roorda, 2011. "On evolutionary ray-projection dynamics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 147-161, October.
    5. Sylvain Sorin & Cheng Wan, 2016. "Finite composite games: Equilibria and dynamics," Post-Print hal-02885860, HAL.
    6. Reinoud Joosten & Berend Roorda, 2008. "Generalized projection dynamics in evolutionary game theory," Papers on Economics and Evolution 2008-11, Philipps University Marburg, Department of Geography.
    7. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    8. Dai Zusai, 2018. "Tempered best response dynamics," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    2. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    3. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    4. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    5. Reinoud Joosten & Berend Roorda, 2008. "Generalized projection dynamics in evolutionary game theory," Papers on Economics and Evolution 2008-11, Philipps University Marburg, Department of Geography.
    6. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    7. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    8. Sylvain Sorin & Cheng Wan, 2016. "Finite composite games: Equilibria and dynamics," Post-Print hal-02885860, HAL.
    9. Marc Harper & Dashiell Fryer, 2015. "Lyapunov Functions for Time-Scale Dynamics on Riemannian Geometries of the Simplex," Dynamic Games and Applications, Springer, vol. 5(3), pages 318-333, September.
    10. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    11. Reinoud Joosten & Berend Roorda, 2011. "On evolutionary ray-projection dynamics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 147-161, October.
    12. Reinoud Joosten, 2009. "Paul Samuelson's critique and equilibrium concepts in evolutionary game theory," Papers on Economics and Evolution 2009-16, Philipps University Marburg, Department of Geography.
    13. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    14. Lahkar, Ratul & Mukherjee, Sayan & Roy, Souvik, 2022. "Generalized perturbed best response dynamics with a continuum of strategies," Journal of Economic Theory, Elsevier, vol. 200(C).
    15. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    16. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    17. RatulLahkar & Sayan Mukherjee & Souvik Roy, 2021. "Generalized Perturbed Best Response Dynamics with a Continuum of Strategies," Working Papers 51, Ashoka University, Department of Economics.
    18. Laraki, Rida & Mertikopoulos, Panayotis, 2013. "Higher order game dynamics," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2666-2695.
    19. Dridi, Slimane & Lehmann, Laurent, 2014. "On learning dynamics underlying the evolution of learning rules," Theoretical Population Biology, Elsevier, vol. 91(C), pages 20-36.
    20. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:67:y:2009:i:2:p:708-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.