IDEAS home Printed from https://ideas.repec.org/p/ags/morc11/188553.html
   My bibliography  Save this paper

Water Valuation in Agriculture under climate change (Case of Souss-Massa Basin, Morocco)

Author

Listed:
  • Elame, Fouad
  • Diukkali, Rachid

Abstract

Water resources become increasingly scarce, scarcity that will become acute in the coming years due, among others, to a reduction in water supply, as a result of climate change, and the increase in demand, accentuated by the population increase and the requirements of economic growth and development. In this context of scarcity, Morocco is confronted with the need to adapt its water management policy from a supply management to a demand management one. Implementing such a policy requires the adoption of new policy instruments and decision making support tools that take into account the complexity of the current and future situation, as well as allowing the assessment of the economic, social and environmental impacts of various water resources allocation alternatives at the overall river basin level. This paper compares several methods for calculating the water value and proposes an integrated economic water management model at the river basin scale. This model takes into account the economic, institutional, hydrological and agricultural aspects, as well as the behavior of various agents involved in water resources management and the competition among sectors. One Major contribution of this model is a detailed disaggregation by spatial units (hydrological units, cropping areas, and grazing land), by agricultural production systems (irrigated and rainfed crops), and by farm sizes. Basically it’s an optimization model with a non linear objective function, and using the positive mathematical programming method technique for its calibration. Given the conjunctive use of water at the river basin level, the model results show the tremendous impact of surface water management on the overexploitation of the ground water and the risk of its depletion. A management policy of surface water based on administrative pricing, pumping cost, and water supply marginal cost is proven inadequate for a sustainable resource management since it underestimates the overall water scarcity at the river basin level.

Suggested Citation

  • Elame, Fouad & Diukkali, Rachid, 2011. "Water Valuation in Agriculture under climate change (Case of Souss-Massa Basin, Morocco)," 2011 Conference: Impacts of Climate Change on Agriculture, December 6-7, 2011, Rabat, Morocco 188553, Moroccan Association of Agricultural Economics (AMAEco).
  • Handle: RePEc:ags:morc11:188553
    DOI: 10.22004/ag.econ.188553
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/188553/files/Water%20valuation_Elame_Doukkali.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.188553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    2. Tsur, Yacov & Dinar, Ariel & Doukkali, Rachid M. & Roe, Terry, 2004. "Irrigation water pricing: policy implications based on international comparison," Environment and Development Economics, Cambridge University Press, vol. 9(6), pages 735-755, December.
    3. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Barkaoui, Ahmed & Butault, Jean-Pierre, 2000. "Cereals and Oilseeds Supply within the EU, under AGENDA 2000: A Positive Mathematical Programming Application," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 1(2), pages 1-12, August.
    6. McKinney, D. C. & Cai, X. & Rosegrant, M. W. & Ringler, C. & Scott, C. A., 1999. "Modeling water resources management at the basin level: review and future directions," IWMI Books, Reports H024075, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stella Apostolaki & Ebun Akinsete & Stella Tsani & Phoebe Koundouri & Nikitas Pittis & Eleftherios Levantis, 2019. "Assessing the Effectiveness of the WFD as a Tool to Address Different Levels of Water Scarcity Based on Two Case Studies of the Mediterranean Region," DEOS Working Papers 1909, Athens University of Economics and Business.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Ximing & Ringler, Claudia & You, Jiing-Yun, 2008. "Substitution between water and other agricultural inputs: Implications for water conservation in a River Basin context," Ecological Economics, Elsevier, vol. 66(1), pages 38-50, May.
    2. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    3. Chebil, A. & Frija, A. & Thabet, C., 2012. "Irrigation water pricing between governmental policies and farmers’ perception: Implications for green-houses horticultural production in Teboulba (Tunisia)," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(2), pages 1-11.
    4. Bradley Franklin & Kurt Schwabe & Lucia Levers, 2021. "Perennial Crop Dynamics May Affect Long-Run Groundwater Levels," Land, MDPI, vol. 10(9), pages 1-18, September.
    5. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    6. Calatrava-Leyva, Javier & Colmenero, Alberto Garrido, 2001. "Analisis del efecto de los mercados de agua sobre el beneficio de las explotaciones, la contaminacion por nitratos y el empleo eventual agrario," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 1(02), pages 1-21, December.
    7. Letcher, R.A. & Croke, B.F.W. & Jakeman, A.J. & Merritt, W.S., 2006. "An integrated modelling toolbox for water resources assessment and management in highland catchments: Model description," Agricultural Systems, Elsevier, vol. 89(1), pages 106-131, July.
    8. Donati, Michele & Bodini, Diego & Arfini, Filippo & Zezza, Annalisa, 2013. "An integrated PMP model to assess the development of agro-energy crops and the effect on water requirements," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 2(3), pages 1-21, December.
    9. Flavia Tromboni & Lucia Bortolini & José Morábito, 2014. "Integrated hydrologic–economic decision support system for groundwater use confronting climate change uncertainties in the Tunuyán River basin, Argentina," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(6), pages 1317-1336, December.
    10. Andersen, Jesper Levring & Bogetoft, Peter, 2003. "Quota Trading and Profitability: Theoretical Models and Applications to Danish Fisheries," Unit of Economics Working Papers 24180, Royal Veterinary and Agricultural University, Food and Resource Economic Institute.
    11. Thomas Heckelei & Wolfgang Britz, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 57, pages 27-50.
    12. G. R. Soltani & M. Bakhshoodeh & M. Zibaei, 2009. "Optimization of Agricultural Water Use and Trade Patterns: The Case of Iran," Working Papers 508, Economic Research Forum, revised Dec 2009.
    13. Cai, Ximing & McKinney, Daene C. & Rosegrant, Mark W., 2003. "Sustainability analysis for irrigation water management in the Aral Sea region," Agricultural Systems, Elsevier, vol. 76(3), pages 1043-1066, June.
    14. Christina Moulogianni, 2022. "Comparison of Selected Mathematical Programming Models Used for Sustainable Land and Farm Management," Land, MDPI, vol. 11(8), pages 1-18, August.
    15. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    16. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.
    17. Cai, Ximing & McKinney, Daene C. & Rosegrant, Mark W., 2001. "Sustainability analysis for irrigation water management: concepts, methodology, and application to the Aral Sea region," EPTD discussion papers 86, International Food Policy Research Institute (IFPRI).
    18. Bouma, Jetske A. & Biggs, Trent W. & Bouwer, Laurens M., 2011. "The downstream externalities of harvesting rainwater in semi-arid watersheds: An Indian case study," Agricultural Water Management, Elsevier, vol. 98(7), pages 1162-1170, May.
    19. Javier Martínez-Dalmau & Carlos Gutiérrez-Martín & Alfonso Expósito & Julio Berbel, 2023. "Analysis of Water Pricing Policy Effects in a Mediterranean Basin Through a Hydroeconomic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1599-1618, March.
    20. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:morc11:188553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://www.weadapt.org/organisation/amaeco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.