IDEAS home Printed from https://ideas.repec.org/p/ags/iaae15/229377.html
   My bibliography  Save this paper

Efficiency differentials and technological gaps in beef cattle production systems in Nigeria

Author

Listed:
  • Nwigwe, Cecilia
  • Okoruwa, Victor
  • Obi-Egbedi, Oghenerueme

Abstract

The present study analysed the technical efficiency and technological gaps (TGR/MTR) in three major beef cattle production systems in Nigeria, using the stochastic metafrontier approach. The usual methods of dealing with technological differences makes it difficult to separate “technology gaps” from technical inefficiency within a given system, hence the need for an analytical framework such as metafrontier which allows us to distinguish between the two. Results show that technical inefficiency exists in the three production systems but the ranching system is more efficient, in that it has a higher MTR. The average pooled technical efficiency TE with respect to the metafrontier was estimated to be 0.56; this suggests that there is scope to improve beef output in Nigeria by up to 44% of the total potential, giving existing technologies and inputs.

Suggested Citation

  • Nwigwe, Cecilia & Okoruwa, Victor & Obi-Egbedi, Oghenerueme, 2015. "Efficiency differentials and technological gaps in beef cattle production systems in Nigeria," 2015 Conference, August 9-14, 2015, Milan, Italy 229377, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae15:229377
    DOI: 10.22004/ag.econ.229377
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/229377/files/NwigweFinal.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.229377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omononona B.T. & A.T. Akanbi & O.A. Egbetokun, 2010. "Farmers Resource – Use And Technical Efficiency In Cowpea Production In Nigeria," Economic Analysis and Policy, Elsevier, vol. 40(1), pages 102-110, March.
    2. Belen Iraizoz & Isabel Bardaji & Manuel Rapun, 2005. "The Spanish beef sector in the 1990s: impact of the BSE crisis on efficiency and profitability," Applied Economics, Taylor & Francis Journals, vol. 37(4), pages 473-484.
    3. Okoruwa, Victor & Jabbar, M. A. & Akinwumi, J. A., 1996. "Crop-livestock competition in the West African derived savanna: Application of a multi-objective programming model," Agricultural Systems, Elsevier, vol. 52(4), pages 439-453, December.
    4. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    5. Huang, Yi-Ju & Chen, Ku-Hsieh & Yang, Chih-Hai, 2010. "Cost efficiency and optimal scale of electricity distribution firms in Taiwan: An application of metafrontier analysis," Energy Economics, Elsevier, vol. 32(1), pages 15-23, January.
    6. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    7. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    8. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    9. Andrew Barnes, 2008. "Technical Efficiency Estimates of Scottish Agriculture: A Note," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(2), pages 370-376, June.
    10. Awudu Abdulai & Hendrik Tietje, 2007. "Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(3), pages 393-416, September.
    11. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    12. Rakipova, Anna N. & Gillespie, Jeffrey M. & Franke, Donald E., 2003. "Determinants of Technical Efficiency in Louisiana Beef Cattle Production," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2003, pages 1-9.
    13. Gamba, Paul, 2006. "Beef and Dairy Cattle Improvement Services: A Policy Perspective," Working Papers 202620, Egerton University, Tegemeo Institute of Agricultural Policy and Development.
    14. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    15. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Hossein Mehrabi Boshrabadi & Renato Villano & Euan Fleming, 2008. "Technical efficiency and environmental‐technological gaps in wheat production in Kerman province of Iran," Agricultural Economics, International Association of Agricultural Economists, vol. 38(1), pages 67-76, January.
    18. Chen, Zhuo & Song, Shunfeng, 2008. "Efficiency and technology gap in China's agriculture: A regional meta-frontier analysis," China Economic Review, Elsevier, vol. 19(2), pages 287-296, June.
    19. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    20. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    21. Chavas, Jean-Paul & Aliber, Michael, 1993. "An Analysis Of Economic Efficiency In Agriculture: A Nonparametric Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(1), pages 1-16, July.
    22. Xiaobing Wang & Supawat Rungsuriyawiboon, 2010. "Agricultural efficiency, technical change and productivity in China," Post-Communist Economies, Taylor & Francis Journals, vol. 22(2), pages 207-227.
    23. Featherstone, Allen M. & Langemeier, Michael R. & Ismet, Mohammad, 1997. "A Nonparametric Analysis of Efficiency for a Sample of Kansas Beef Cow Farms," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 29(1), pages 175-184, July.
    24. Otieno, David Jakinda & Ruto, Eric & Hubbard, Lionel J., 2010. "Cattle farmers’ preferences for Disease Free Zones: A choice experiment analysis in Kenya," 84th Annual Conference, March 29-31, 2010, Edinburgh, Scotland 91951, Agricultural Economics Society.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2011. "Technical efficiency and technology gaps in beef cattle production systems in Kenya: A stochastic metafrontier analysis," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108947, Agricultural Economics Society.
    2. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2012. "Determinants of technical efficiency in beef cattle production in Kenya," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125853, International Association of Agricultural Economists.
    3. Bahta, Sirak & Baker, Derek & Malope, Patrick & Katijuongua, Hikuepi, 2015. "A metafronteir analysis of determinants of technical efficiency in beef farm types: an application to Botswana," 2015 Conference, August 9-14, 2015, Milan, Italy 211194, International Association of Agricultural Economists.
    4. Gatti, Nicolas & Lema, Daniel & Brescia, Victor, 2015. "A Meta-Frontier Approach to Measuring Technical Efficiency and Technology Gaps in Beef Cattle Production in Argentina," 2015 Conference, August 9-14, 2015, Milan, Italy 211647, International Association of Agricultural Economists.
    5. Xiangfei Xin & Yi Zhang & Jimin Wang & John Alexander Nuetah, 2016. "Effects of Farm Size on Technical Efficiency in China's Broiler Sector: A Stochastic Meta-Frontier Approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 493-516, September.
    6. Juan Cabas Monje & Bouali Guesmi & Amer Ait Sidhoum & José María Gil, 2023. "Measuring technical efficiency of Spanish pig farming: Quantile stochastic frontier approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 688-703, October.
    7. Farnaz Pourzand & Mohammad Bakhshoodeh, 2014. "Technical effici ency and agricultural sustainability–technology gap of maize producers in Fars province of Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 671-688, June.
    8. Phuc Trong Ho & Pham Xuan Hung & Nguyen Duc Tien, 2023. "Effects of varieties and seasons on cost efficiency in rice farming: A stochastic metafrontier approach," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society, vol. 13(2), pages 120-129.
    9. Kristof De Witte & Laura López-Torres, 2017. "Efficiency in education: a review of literature and a way forward," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(4), pages 339-363, April.
    10. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Lau, Sim-Yee, 2017. "Have regulatory reforms improved the efficiency levels of the Japanese electricity distribution sector? A cost metafrontier-based analysis," Energy Policy, Elsevier, vol. 108(C), pages 606-616.
    11. Chiu, Yung-ho & Luo, Zhengying & Chen, Yu-Chuan & Wang, Zebin & Tsai, Min-Pei, 2013. "A comparison of operating performance management between Taiwan banks and foreign banks based on the Meta-Hybrid DEA model," Economic Modelling, Elsevier, vol. 33(C), pages 433-439.
    12. Latruffe, Laure & Fogarasi, József & Desjeux, Yann, 2012. "Efficiency, productivity and technology comparison for farms in Central and Western Europe: The case of field crop and dairy farming in Hungary and France," Economic Systems, Elsevier, vol. 36(2), pages 264-278.
    13. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    14. Hailu, Getu & Goddard, Ellen W. & Jeffrey, Scott R., 2005. "Measuring Efficiency in Fruit and Vegetable Marketing Co-operatives with Heterogeneous Technologies in Canada," 2005 Annual meeting, July 24-27, Providence, RI 19507, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Yang, Anhyuk & Lee, Daeho & Hwang, Junseok & Shin, Jungwoo, 2013. "The influence of regulations on the efficiency of telecommunications operators: A meta-frontier analysis," Telecommunications Policy, Elsevier, vol. 37(11), pages 1071-1082.
    16. Tanko, Mohammed & Ismaila, Salifu, 2021. "How culture and religion influence the agriculture technology gap in Northern Ghana," World Development Perspectives, Elsevier, vol. 22(C).
    17. Amer Ait Sidhoum & K Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    18. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    19. Temoso, Omphile & Villano, Renato & Hadley, David, 2016. "Evaluating the productivity gap between commercial and traditional beef production systems in Botswana," Agricultural Systems, Elsevier, vol. 149(C), pages 30-39.
    20. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.

    More about this item

    Keywords

    Livestock Production/Industries; Production Economics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae15:229377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.