IDEAS home Printed from https://ideas.repec.org/p/ags/iaae15/212010.html
   My bibliography  Save this paper

Global food efficiency of climate change mitigation in agriculture

Author

Listed:
  • Kleinwechter, Ulrich
  • Levesque, Antoine
  • Havlik, Petr
  • Forsell, Nicklas
  • Zhang, Yuquan
  • Fricko, Oliver
  • Obersteiner, Michael

Abstract

Concerns exist regarding potential trade-offs between climate change mitigation in agriculture and food security. Against this background, the Global Biosphere Management Model (GLOBIOM) is applied to a range of scenarios of mitigation of emissions from agriculture to assess the implications of climate mitigation for agricultural production, prices and food availability. The “food efficiency of mitigation” (FEM) is introduced as a tool to make statements about how to attain desired levels of agricultural mitigation in the most efficient manner in terms of food security. It is applied to a range of policy scenarios which contrast a climate policy regime with full global collaboration to scenarios of fragmented climate policies that grant exemptions to selected developing country groups. Results indicate increasing marginal costs of abatement in terms of food calories and suggest that agricultural mitigation is most food efficient in a policy regime with global collaboration. Exemptions from this regime cause food efficiency losses.

Suggested Citation

  • Kleinwechter, Ulrich & Levesque, Antoine & Havlik, Petr & Forsell, Nicklas & Zhang, Yuquan & Fricko, Oliver & Obersteiner, Michael, 2015. "Global food efficiency of climate change mitigation in agriculture," 2015 Conference, August 9-14, 2015, Milan, Italy 212010, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae15:212010
    DOI: 10.22004/ag.econ.212010
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/212010/files/Kleinwechter-Global%20food%20efficiency%20of%20climate%20change%20mitigation-726.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.212010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ana Iglesias & Sonia Quiroga & Agustin Diz, 2011. "Looking into the future of agriculture in a changing climate," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 38(3), pages 427-447, August.
    2. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    3. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    4. Petr Havlík & Hugo Valin & Aline Mosnier & Michael Obersteiner & Justin S. Baker & Mario Herrero & Mariana C. Rufino & Erwin Schmid, 2013. "Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse Gas Emissions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 442-448.
    5. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    6. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    7. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    8. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    9. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    10. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roson, Roberto & Damania, Richard, 2017. "The macroeconomic impact of future water scarcity," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1141-1162.
    2. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    3. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    4. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    5. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    6. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    7. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    8. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    9. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    10. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    11. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    12. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    13. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    14. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    15. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    16. Gregory J. Scott & Athanasios Petsakos & Henry Juarez, 2019. "Climate change, food security, and future scenarios for potato production in India to 2030," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 43-56, February.
    17. Parinaz Rashidi & Sopan D. Patil & Aafke M. Schipper & Rob Alkemade & Isabel Rosa, 2023. "Downscaling Global Land-Use Scenario Data to the National Level: A Case Study for Belgium," Land, MDPI, vol. 12(9), pages 1-19, September.
    18. Leibin Wang & Robert V. Rohli & Qigen Lin & Shaofei Jin & Xiaodong Yan, 2022. "Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming," Sustainability, MDPI, vol. 14(18), pages 1-13, September.
    19. Food and Agriculture Organization of the United Nations (FAO), "undated". "The future of food and agriculture – Alternative pathways to 2050," The Future of Food and Agriculture 319842, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    20. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.

    More about this item

    Keywords

    Agricultural and Food Policy; Food Consumption/Nutrition/Food Safety; Land Economics/Use;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae15:212010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.