IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v128y2016icp33-43.html
   My bibliography  Save this article

Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model

Author

Listed:
  • Speers, Ann E.
  • Besedin, Elena Y.
  • Palardy, James E.
  • Moore, Chris

Abstract

Coral reefs are highly productive shallow marine habitats at risk of degradation due to CO2-mediated global ocean changes, including ocean acidification and rising sea temperature. Consequences of coral reef habitat loss are expected to include reduced reef fisheries production. To our knowledge, the welfare impact of reduced reef fish supply in commercial markets has not yet been studied. We develop a global model of annual demand for reef fish in regions with substantial coral reef area and use it to project potential consumer surplus losses given coral cover projections from a coupled climate, ocean, and coral biology simulation (CO2-COST). Under an illustrative high emission scenario (IPCC RCP 8.5), 92% of coral cover is lost by 2100. Policies reaching lower radiative forcing targets (e.g., IPCC RCP 6.0) may partially avoid habitat loss, thereby preserving an estimated $14 to $20 billion in consumer surplus through 2100 (2014$ USD, 3% discount). Avoided damages vary annually, are sensitive to biological assumptions, and appear highest when coral ecosystems have moderate adaptive capacity. These welfare loss estimates are the first to monetize ocean acidification impacts to commercial finfisheries and complement the existing estimates of economic impacts to shellfish and to coral reefs generally.

Suggested Citation

  • Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
  • Handle: RePEc:eee:ecolec:v:128:y:2016:i:c:p:33-43
    DOI: 10.1016/j.ecolecon.2016.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800916304311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2016.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumaila, Ussif R. & Walters, Carl, 2005. "Intergenerational discounting: a new intuitive approach," Ecological Economics, Elsevier, vol. 52(2), pages 135-142, January.
    2. Paulo A.L.D. Nunes & Pushpam Kumar & Tom Dedeurwaerdere (ed.), 2014. "Handbook on the Economics of Ecosystem Services and Biodiversity," Books, Edward Elgar Publishing, number 15058.
    3. Johann D. Bell & Alexandre Ganachaud & Peter C. Gehrke & Shane P. Griffiths & Alistair J. Hobday & Ove Hoegh-Guldberg & Johanna E. Johnson & Robert Le Borgne & Patrick Lehodey & Janice M. Lough & Rich, 2013. "Mixed responses of tropical Pacific fisheries and aquaculture to climate change," Nature Climate Change, Nature, vol. 3(6), pages 591-599, June.
    4. Delgado, C.L. & Wada, N. & Rosegrant, M.W. & Meijer, S. & Ahmed, M., 2003. "Fish to 2020: supply and demand in changing global markets," Monographs, The WorldFish Center, number 15796, April.
    5. Frank Asche & Helge Bremnes & Cathy R. Wessells, 1999. "Product Aggregation, Market Integration, and Relationships between Prices: An Application to World Salmon Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(3), pages 568-581.
    6. Bishop, Richard C. & Holt, Matthew, 2003. "Estimating Post-harvest Benefits from Increases in Commercial Fish Catches with Implications for Remediation of Impingement and Entrainment Losses at Power Plants," Staff Paper Series 458, University of Wisconsin, Agricultural and Applied Economics.
    7. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    8. Luke M. Brander & Katrin Rehdanz & Richard S. J. Tol & Pieter J. H. Van Beukering, 2012. "The Economic Impact Of Ocean Acidification On Coral Reefs," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-29.
    9. Daiju Narita & Katrin Rehdanz & Richard Tol, 2012. "Economic costs of ocean acidification: a look into the impacts on global shellfish production," Climatic Change, Springer, vol. 113(3), pages 1049-1063, August.
    10. Andrés Cisneros-Montemayor & U. Sumaila, 2010. "A global estimate of benefits from ecosystem-based marine recreation: potential impacts and implications for management," Journal of Bioeconomics, Springer, vol. 12(3), pages 245-268, October.
    11. Jung, Jione & Koo, Won W., 2000. "An Econometric Analysis Of Demand For Meat And Fish Products In Korea," Agricultural Economics Reports 23122, North Dakota State University, Department of Agribusiness and Applied Economics.
    12. Conrad,Jon M., 2010. "Resource Economics," Cambridge Books, Cambridge University Press, number 9780521874953.
    13. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    14. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    15. Kuo S. Huang, 1988. "An Inverse Demand System for U.S. Composite Foods," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(4), pages 902-909.
    16. Nicholas A J Graham & Tim R McClanahan & M Aaron MacNeil & Shaun K Wilson & Nicholas V C Polunin & Simon Jennings & Pascale Chabanet & Susan Clark & Mark D Spalding & Yves Letourneur & Lionel Bigot & , 2008. "Climate Warming, Marine Protected Areas and the Ocean-Scale Integrity of Coral Reef Ecosystems," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-9, August.
    17. Louise S L Teh & Lydia C L Teh & U Rashid Sumaila, 2013. "A Global Estimate of the Number of Coral Reef Fishers," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    18. Richard C. Bishop & Matthew T. Holt, 2002. "A semiflexible normalized quadratic inverse demand system: an application to the price formation of fish," Empirical Economics, Springer, vol. 27(1), pages 23-47.
    19. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    20. Barten, A. P. & Bettendorf, L. J., 1989. "Price formation of fish : An application of an inverse demand system," European Economic Review, Elsevier, vol. 33(8), pages 1509-1525, October.
    21. Moore, Chris, 2015. "Welfare Estimates of Avoided Ocean Acidification in the U.S. Mollusk Market," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(1), pages 1-13.
    22. Conrad,Jon M., 2010. "Resource Economics," Cambridge Books, Cambridge University Press, number 9780521697675.
    23. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    24. Esther W. Mezey & Jon M. Conrad, 2010. "Real Options in Resource Economics," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 33-52, October.
    25. John F Bruno & Elizabeth R Selig, 2007. "Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons," PLOS ONE, Public Library of Science, vol. 2(8), pages 1-8, August.
    26. Joshua E. Cinner & Cindy Huchery & Christina C. Hicks & Tim M. Daw & Nadine Marshall & Andrew Wamukota & Edward H. Allison, 2015. "Changes in adaptive capacity of Kenyan fishing communities," Nature Climate Change, Nature, vol. 5(9), pages 872-876, September.
    27. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    28. Kuo S. Huang, 1996. "A Further Look at Flexibilities and Elasticities: Reply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1130-1131.
    29. Londoño, Luz M. & Johnston, Robert J., 2012. "Enhancing the reliability of benefit transfer over heterogeneous sites: A meta-analysis of international coral reef values," Ecological Economics, Elsevier, vol. 78(C), pages 80-89.
    30. Andréa G. Grottoli & Lisa J. Rodrigues & James E. Palardy, 2006. "Heterotrophic plasticity and resilience in bleached corals," Nature, Nature, vol. 440(7088), pages 1186-1189, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prabhu Pingali & Anaka Aiyar & Mathew Abraham & Andaleeb Rahman, 2019. "Transforming Food Systems for a Rising India," Palgrave Studies in Agricultural Economics and Food Policy, Palgrave Macmillan, number 978-3-030-14409-8, August.
    2. Yee, Susan H. & Paulukonis, E. & Simmons, C. & Russell, M. & Fulford, R. & Harwell, L. & Smith, L.M., 2021. "Projecting effects of land use change on human well-being through changes in ecosystem services," Ecological Modelling, Elsevier, vol. 440(C).
    3. Ngoc, Quach Thi Khanh, 2019. "Assessing the value of coral reefs in the face of climate change: The evidence from Nha Trang Bay, Vietnam," Ecosystem Services, Elsevier, vol. 35(C), pages 99-108.
    4. Laura J. Falkenberg & Richard G.J. Bellerby & Sean D. Connell & Lora E. Fleming & Bruce Maycock & Bayden D. Russell & Francis J. Sullivan & Sam Dupont, 2020. "Ocean Acidification and Human Health," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
    5. Tran, Nhuong & Shikuku, Kelvin Mashisia & Peart, Jeffrey & Chan, Chin Yee & Chu, Long & Bailey, Conner & Valdivia, Roberto, 2022. "A Review of economic analysis of climate change impacts and adaptation in fisheries and aquaculture," SocArXiv zctxn, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    2. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    3. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    4. Thomas Winkler & Wilfried Winiwarter, 2016. "Greenhouse gas scenarios for Austria: a comparison of different approaches to emission trends," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(8), pages 1181-1196, December.
    5. Kleinwechter, Ulrich & Levesque, Antoine & Havlik, Petr & Forsell, Nicklas & Zhang, Yuquan & Fricko, Oliver & Obersteiner, Michael, 2015. "Global food efficiency of climate change mitigation in agriculture," 2015 Conference, August 9-14, 2015, Milan, Italy 212010, International Association of Agricultural Economists.
    6. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    7. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    8. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    9. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    10. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    11. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    12. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    13. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    16. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    17. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    18. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    19. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    20. Moyer, Jonathan D. & Hedden, Steve, 2020. "Are we on the right path to achieve the sustainable development goals?," World Development, Elsevier, vol. 127(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:128:y:2016:i:c:p:33-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.