IDEAS home Printed from https://ideas.repec.org/p/ags/aesc22/321171.html
   My bibliography  Save this paper

Within Growing Season Weather Variability and Land Allocation Decisions: Evidence from Maize Farmers in Ethiopia

Author

Listed:
  • Ahmed, Musa Hasen
  • Tesfaye, Wondimagegn Mesfin
  • Gassmann, Franziska

Abstract

We investigate if and how farmers adjust their land allocation decisions in response to within-growing season weather variability using novel crop-specific data collected over seven consecutive years. By focusing on maize-producing smallholder farmers in Ethiopia, we show that farmers respond quickly to growing season weather variability by adjusting their land allocation decisions. In addition to quantifying a substantial adaptation margin that has not been documented before, our findings also reveal the presence of a weather variability-induced expansion of maize production into areas that are less suitable for maize cultivation.

Suggested Citation

  • Ahmed, Musa Hasen & Tesfaye, Wondimagegn Mesfin & Gassmann, Franziska, 2022. "Within Growing Season Weather Variability and Land Allocation Decisions: Evidence from Maize Farmers in Ethiopia," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321171, Agricultural Economics Society - AES.
  • Handle: RePEc:ags:aesc22:321171
    DOI: 10.22004/ag.econ.321171
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/321171/files/Musa%20Hasen_Ahmed_Ahmed_AES.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.321171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lindsey L. Sloat & Steven J. Davis & James S. Gerber & Frances C. Moore & Deepak K. Ray & Paul C. West & Nathaniel D. Mueller, 2020. "Climate adaptation by crop migration," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    3. Mesbah Motamed & Lihong McPhail & Ryan Williams, 2016. "Corn Area Response to Local Ethanol Markets in the United States: A Grid Cell Level Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 726-743.
    4. Gaurav Arora & Hongli Feng & Christopher J. Anderson & David A. Hennessy, 2020. "Evidence of climate change impacts on crop comparative advantage and land use," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 221-236, March.
    5. Man Li & JunJie Wu & Xiangzheng Deng, 2013. "Identifying Drivers of Land Use Change in China: A Spatial Multinomial Logit Model Analysis," Land Economics, University of Wisconsin Press, vol. 89(4), pages 632-654.
    6. Andre Croppenstedt & Mulat Demeke & Meloria M. Meschi, 2003. "Technology Adoption in the Presence of Constraints: the Case of Fertilizer Demand in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 7(1), pages 58-70, February.
    7. Michael J. Roberts & Wolfram Schlenker & Jonathan Eyer, 2013. "Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 236-243.
    8. Nathan Nunn & Nancy Qian, 2011. "The Potato's Contribution to Population and Urbanization: Evidence From A Historical Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(2), pages 593-650.
    9. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    10. Xinde Ji & Kelly M. Cobourn, 2021. "Weather Fluctuations, Expectation Formation, and Short-Run Behavioral Responses to Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 77-119, January.
    11. Jean-Paul Chavas & Matthew T. Holt, 1990. "Acreage Decisions Under Risk: The Case of Corn and Soybeans," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(3), pages 529-538.
    12. Federico Belotti & Gordon Hughes & Andrea Piano Mortari, 2017. "Spatial panel-data models using Stata," Stata Journal, StataCorp LP, vol. 17(1), pages 139-180, March.
    13. Moniruzzaman, Shaikh, 2015. "Crop choice as climate change adaptation: Evidence from Bangladesh," Ecological Economics, Elsevier, vol. 118(C), pages 90-98.
    14. Mamo, Nemera & Bhattacharyya, Sambit & Moradi, Alexander, 2019. "Intensive and extensive margins of mining and development: Evidence from Sub-Saharan Africa," Journal of Development Economics, Elsevier, vol. 139(C), pages 28-49.
    15. Juan Sesmero & Jacob Ricker-Gilbert & Aaron Cook, 2018. "How Do African Farm Households Respond to Changes in Current and Past Weather Patterns? A Structural Panel Data Analysis from Malawi," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 115-144.
    16. Paula Bustos & Bruno Caprettini & Jacopo Ponticelli, 2016. "Agricultural Productivity and Structural Transformation: Evidence from Brazil," American Economic Review, American Economic Association, vol. 106(6), pages 1320-1365, June.
    17. Tsedeke Abate & Bekele Shiferaw & Abebe Menkir & Dagne Wegary & Yilma Kebede & Kindie Tesfaye & Menale Kassie & Gezahegn Bogale & Berhanu Tadesse & Tolera Keno, 2015. "Factors that transformed maize productivity in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 965-981, October.
    18. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    19. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    20. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    21. Sharon Maccini & Dean Yang, 2009. "Under the Weather: Health, Schooling, and Economic Consequences of Early-Life Rainfall," American Economic Review, American Economic Association, vol. 99(3), pages 1006-1026, June.
    22. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    23. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    24. Jisang Yu & Aaron Smith & Daniel A Sumner, 2018. "Effects of Crop Insurance Premium Subsidies on Crop Acreage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 91-114.
    25. Taraz, Vis, 2017. "Adaptation to climate change: historical evidence from the Indian monsoon," Environment and Development Economics, Cambridge University Press, vol. 22(5), pages 517-545, October.
    26. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    27. Sanchez, Pedro A., 2020. "Viewpoint: Time to Increase Production of Nutrient-rich Foods," Food Policy, Elsevier, vol. 91(C).
    28. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    29. Xiaomeng Cui & Wei Xie, 2022. "Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 249-272, January.
    30. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    31. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    32. Arnaud Costinot & Dave Donaldson & Cory Smith, 2016. "Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields around the World," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 205-248.
    33. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    34. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang, 2010. "How Chinese Farmers Change Crop Choice To Adapt To Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 167-185.
    35. Yijia Li & Ruiqing Miao & Madhu Khanna, 2019. "Effects of Ethanol Plant Proximity and Crop Prices on Land-Use Change in the United States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(2), pages 467-491.
    36. William Lin & Robert Dismukes, 2007. "Supply Response under Risk: Implications for Counter-Cyclical Payments' Production Impact," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(1), pages 64-86.
    37. Auffhammer, Maximilian & Schlenker, Wolfram, 2014. "Empirical studies on agricultural impacts and adaptation," Energy Economics, Elsevier, vol. 46(C), pages 555-561.
    38. David R. Lee & Peter G. Helmberger, 1985. "Estimating Supply Response in the Presence of Farm Programs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 193-203.
    39. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    40. Mekbib G. Haile & Matthias Kalkuhl & Joachim von Braun, 2016. "Worldwide Acreage and Yield Response to International Price Change and Volatility: A Dynamic Panel Data Analysis for Wheat, Rice, Corn, and Soybeans," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 172-190.
    41. Michael L. Mann & James M. Warner & Arun S. Malik, 2019. "Predicting high-magnitude, low-frequency crop losses using machine learning: an application to cereal crops in Ethiopia," Climatic Change, Springer, vol. 154(1), pages 211-227, May.
    42. Mu, Jianhong E. & McCarl, Bruce A. & Sleeter, Benjamin & Abatzoglou, John T. & Zhang, Hongliang, 2018. "Adaptation with climate uncertainty: An examination of agricultural land use in the United States," Land Use Policy, Elsevier, vol. 77(C), pages 392-401.
    43. James P. Lesage, 1997. "Bayesian Estimation of Spatial Autoregressive Models," International Regional Science Review, , vol. 20(1-2), pages 113-129, April.
    44. Cornelis Gardebroek & Jeffrey J. Reimer & Lieneke Baller, 2017. "The Impact of Biofuel Policies on Crop Acreages in Germany and France," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 839-860, September.
    45. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    46. Yanbing Wang & Michael S. Delgado & Juan Sesmero & Benjamin M. Gramig, 2020. "Market Structure and the Local Effects of Ethanol Expansion on Land Allocation: A Spatially Explicit Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1598-1622, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musa Hasen Ahmed & Wondimagegn Mesfin Tesfaye & Franziska Gassmann, 2023. "Early growing season weather variation, expectation formation and agricultural land allocation decisions in Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 255-272, February.
    2. Ahmed, Musa Hasen & Tesfaye, Wondimagegn & Stephan, Dietrich & Gassmann, Franziska, 2021. "Within Growing Season Weather Variability and Adaptation in Agriculture: Evidence from Cropping Patterns of Ethiopia," 2021 Conference, August 17-31, 2021, Virtual 315056, International Association of Agricultural Economists.
    3. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    4. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    5. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    6. Xinde Ji & Kelly M. Cobourn, 2021. "Weather Fluctuations, Expectation Formation, and Short-Run Behavioral Responses to Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 77-119, January.
    7. Xiaomeng Cui & Wei Xie, 2022. "Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 249-272, January.
    8. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    9. Cui, X., 2018. "Adaptation to Climate Change: Evidence from US Acreage Response," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277094, International Association of Agricultural Economists.
    10. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated Agricultural Sensitivity and Adaptability to Rising Temperatures across Regions and Sectors in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335522, Agricultural and Applied Economics Association.
    11. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    12. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," Working Papers halshs-03420657, HAL.
    13. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," PSE Working Papers halshs-03420657, HAL.
    14. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    15. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated agricultural sensitivity and adaptability to rising temperatures across regions and sectors in China," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    16. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    17. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    18. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    19. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    20. Solomon Hsiang & Paulina Oliva & Reed Walker, 2019. "The Distribution of Environmental Damages," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(1), pages 83-103.

    More about this item

    Keywords

    Crop Production/Industries; Production Economics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc22:321171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.