IDEAS home Printed from https://ideas.repec.org/h/nbr/nberch/14507.html
   My bibliography  Save this book chapter

Do Conservation Policies Work? Evidence from Residential Water Use

In: Environmental and Energy Policy and the Economy, volume 2

Author

Listed:
  • Oliver R. Browne
  • Ludovica Gazze
  • Michael Greenstone

Abstract

In response to the historic 2011–17 California drought, local governments enacted a raft of conservation policies, and little is known about which ones explain the sharp decline in residential water consumption. To answer this question, we use a novel data set of hourly water consumption data for more than 82,300 households in Fresno, California, where water consumption declined by nearly a third, and have three main findings. First, we estimate the price elasticity of demand for water to be 0.16 for marginal rates and 0.39 for average rates. Second, reducing the number of days where outdoor watering is allowable from 3 to 2 substantially decreases water use, despite the availability of opportunities to substitute between permitted and nonpermitted hours, days, and seasons. Third, “bully pulpit” pronouncements about the water crisis increased public awareness of drought conditions but did not contribute to water savings. Overall, higher water prices explain 40%–44% of the changes in residential water use observed during our sample period in Fresno, and reductions in the number of days when outdoor watering is allowable explain 45%–51% of these changes. However, the absence of experimental or quasi-experimental variation in these policies means that we interpret this associational evidence cautiously.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Oliver R. Browne & Ludovica Gazze & Michael Greenstone, 2020. "Do Conservation Policies Work? Evidence from Residential Water Use," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 2, pages 190-225, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberch:14507
    as

    Download full text from publisher

    File URL: http://www.nber.org/chapters/c14507.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. H. Allen Klaiber & V. Kerry Smith & Michael Kaminsky & Aaron Strong, 2014. "Measuring Price Elasticities for Residential Water Demand with Limited Information," Land Economics, University of Wisconsin Press, vol. 90(1), pages 100-113.
    2. Egebark, Johan & Ekström, Mathias, 2016. "Can indifference make the world greener?," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 1-13.
    3. Wichman, Casey J., 2014. "Perceived price in residential water demand: Evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 308-323.
    4. Olmstead, Sheila M., 2009. "Reduced-Form Versus Structural Models of Water Demand Under Nonlinear Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 84-94.
    5. Wichman, Casey J. & Taylor, Laura O. & von Haefen, Roger H., 2016. "Conservation policies: Who responds to price and who responds to prescription?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 114-134.
    6. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    7. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    8. Viard, V. Brian & Fu, Shihe, 2015. "The effect of Beijing's driving restrictions on pollution and economic activity," Journal of Public Economics, Elsevier, vol. 125(C), pages 98-115.
    9. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    10. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    11. Zhang, Wei & Lin Lawell, C.-Y. Cynthia & Umanskaya, Victoria I., 2017. "The effects of license plate-based driving restrictions on air quality: Theory and empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 181-220.
    12. Bhanot, Syon P., 2021. "Isolating the effect of injunctive norms on conservation behavior: New evidence from a field experiment in California," Organizational Behavior and Human Decision Processes, Elsevier, vol. 163(C), pages 30-42.
    13. Lori S. Bennear & Jonathan M. Lee & Laura O. Taylor, 2013. "Municipal Rebate Programs for Environmental Retrofits: An Evaluation of Additionality and Cost‐Effectiveness," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 32(2), pages 350-372, March.
    14. Marc F. Bellemare & Casey J. Wichman, 2020. "Elasticities and the Inverse Hyperbolic Sine Transformation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(1), pages 50-61, February.
    15. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    16. Mansur, Erin T. & Olmstead, Sheila M., 2012. "The value of scarce water: Measuring the inefficiency of municipal regulations," Journal of Urban Economics, Elsevier, vol. 71(3), pages 332-346.
    17. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249.
    18. Paul J. Ferraro & Michael K. Price, 2013. "Using Nonpecuniary Strategies to Influence Behavior: Evidence from a Large-Scale Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 64-73, March.
    19. Greg Halich & Kurt Stephenson, 2009. "Effectiveness of Residential Water-Use Restrictions under Varying Levels of Municipal Effort," Land Economics, University of Wisconsin Press, vol. 85(4), pages 614-626.
    20. R. Quentin Grafton & Michael B. Ward, 2008. "Prices versus Rationing: Marshallian Surplus and Mandatory Water Restrictions," The Economic Record, The Economic Society of Australia, vol. 84(s1), pages 57-65, September.
    21. Daniel A. Brent & Joseph H. Cook & Skylar Olsen, 2015. "Social Comparisons, Household Water Use, and Participation in Utility Conservation Programs: Evidence from Three Randomized Trials," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 597-627.
    22. Renwick, Mary E. & Green, Richard D., 2000. "Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 37-55, July.
    23. Hunt Allcott & Todd Rogers, 2014. "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation," American Economic Review, American Economic Association, vol. 104(10), pages 3003-3037, October.
    24. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    25. David Hensher & Nina Shore & Kenneth Train, 2006. "Water Supply Security and Willingness to Pay to Avoid Drought Restrictions," The Economic Record, The Economic Society of Australia, vol. 82(256), pages 56-66, March.
    26. Castledine, A. & Moeltner, K. & Price, M.K. & Stoddard, S., 2014. "Free to choose: Promoting conservation by relaxing outdoor watering restrictions," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 324-343.
    27. Paul J. Ferraro & Juan Jose Miranda & Michael K. Price, 2011. "The Persistence of Treatment Effects with Norm-Based Policy Instruments: Evidence from a Randomized Environmental Policy Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 318-322, May.
    28. Koichiro Ito & Takanori Ida & Makoto Tanaka, 2018. "Moral Suasion and Economic Incentives: Field Experimental Evidence from Energy Demand," American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 240-267, February.
    29. Lucas W. Davis, 2008. "Durable goods and residential demand for energy and water: evidence from a field trial," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 530-546, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Browne, Oliver R. & Gazze, Ludovica & Greenstone, Michael & Rostapshova, Olga, 2022. "Man vs. Machine : Technological Promise and Political Limits of Automated Regulation Enforcement," CAGE Online Working Paper Series 646, Competitive Advantage in the Global Economy (CAGE).
    2. Jeremy West & Robert W. Fairlie & Bryan Pratt & Liam Rose, 2021. "Automated Enforcement of Irrigation Regulations and Social Pressure for Water Conservation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(6), pages 1179-1207.
    3. Elinder, Mikael & Hu, Xiao & Liang, Che-Yuan, 2021. "Water conservation and the common pool problem: Can pricing address free-riding in residential hot water consumption?," CERE Working Papers 2021:12, CERE - the Center for Environmental and Resource Economics.
    4. Erik Ansink & Carmine Ornaghi & Mirco Tonin, 2021. "Technology vs information to promote conservation: Evidence from water audits," Tinbergen Institute Discussion Papers 21-014/VIII, Tinbergen Institute.
    5. Jessoe, Katrina & Lade, Gabriel E. & Loge, Frank & Spang, Edward, 2021. "Residential water conservation during drought: Experimental evidence from three behavioral interventions," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    6. Bruno, Ellen M. & Jessoe, Katrina K. & Hanemann, Michael, 2023. "The Dynamic Impacts of Pricing Groundwater," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2mx8q1td, Department of Agricultural & Resource Economics, UC Berkeley.
    7. Pratt, Bryan, 2023. "A fine is more than a price: Evidence from drought restrictions," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wichman, Casey J. & Taylor, Laura O. & von Haefen, Roger H., 2016. "Conservation policies: Who responds to price and who responds to prescription?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 114-134.
    2. Pratt, Bryan, 2023. "A fine is more than a price: Evidence from drought restrictions," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    3. Wichman, Casey J., 2017. "Information provision and consumer behavior: A natural experiment in billing frequency," Journal of Public Economics, Elsevier, vol. 152(C), pages 13-33.
    4. Wang, Xiangrui & Lee, Jukwan & Yan, Jia & Thompson, Gary D., 2018. "Testing the behavior of rationally inattentive consumers in a residential water market," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 344-359.
    5. Daniel A. Brent & Corey Lott & Michael Taylor & Joseph Cook & Kimberly Rollins & Shawn Stoddard, 2020. "What Causes Heterogeneous Responses to Social Comparison Messages for Water Conservation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(3), pages 503-537, November.
    6. Daniel A. Brent & Joseph H. Cook & Skylar Olsen, 2015. "Social Comparisons, Household Water Use, and Participation in Utility Conservation Programs: Evidence from Three Randomized Trials," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 597-627.
    7. Wang, Jingjing & Chermak, Janie M., 2021. "Is less always more? Conservation, efficiency and water education programs," Ecological Economics, Elsevier, vol. 184(C).
    8. Tonke, Sebastian, 2020. "Imperfect Procedural Knowledge: Evidence from a Field Experiment to Encourage Water Conservation," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224536, Verein für Socialpolitik / German Economic Association.
    9. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    10. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    11. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    12. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    13. Elinder, Mikael & Hu, Xiao & Liang, Che-Yuan, 2021. "Water conservation and the common pool problem: Can pricing address free-riding in residential hot water consumption?," CERE Working Papers 2021:12, CERE - the Center for Environmental and Resource Economics.
    14. Pratt, Bryan, 2020. "Property Tenure and Determinants of Sensitivity to Price and Non-Price Conservation Instruments," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304283, Agricultural and Applied Economics Association.
    15. Nathan DeMaagd & Michael J. Roberts, 2020. "How Will Climate Change Affect Water Demand? Evidence from Hawaii Microclimates," Working Papers 202020, University of Hawaii at Manoa, Department of Economics.
    16. Nathan DeMaagd & Michael J. Roberts, 2020. "How Will Climate Change Affect Water Demand? Evidence from Hawai‘i Microclimates," Working Papers 2020-2, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    17. Jessoe, Katrina & Lade, Gabriel E. & Loge, Frank & Spang, Edward, 2021. "Residential water conservation during drought: Experimental evidence from three behavioral interventions," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    18. Holladay, Scott & LaRiviere, Jacob & Novgorodsky, David & Price, Michael, 2019. "Prices versus nudges: What matters for search versus purchase of energy investments?," Journal of Public Economics, Elsevier, vol. 172(C), pages 151-173.
    19. Andor, Mark Andreas & Götte, Lorenz & Price, Michael Keith & Schulze Tilling, Anna & Tomberg, Lukas, 2023. "Differences in how and why social comparisons and real-time feedback impact resource use: Evidence from a field experiment," Ruhr Economic Papers 1059, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Nemati, Mehdi & Buck, Steven & Soldati, Hilary, 2017. "The Effect of Social and Consumption Analytics on Residential Water Demand," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252738, Southern Agricultural Economics Association.

    More about this item

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • H4 - Public Economics - - Publicly Provided Goods
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:14507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.