IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i2d10.1007_s11269-018-2133-z.html
   My bibliography  Save this article

Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK

Author

Listed:
  • Liang Lu

    (University of East Anglia)

  • David Deller

    (University of East Anglia)

  • Morten Hviid

    (University of East Anglia)

Abstract

Water scarcity is a global concern. Even in non-drought situations the political and economic costs of developing water resources may favour conservation. Using a single high price to constrain demand raises distributional and political challenges. Increasing block tariffs (IBTs) have been proposed as a solution, balancing incentives for conservation with an equitable distribution of costs across households. Our survey indicates the international evidence on using IBTs to conserve water is mixed, highlighting the operational challenges of implementing effective IBTs. An alternative approach that may side-step affordability concerns are non-price conservation interventions. Robust evidence on behavioural interventions to conserve water is limited, although social comparisons appear effective. Nevertheless, existing price and behavioural interventions have typically been implemented in response to droughts, thus caution is needed when generalising this evidence to non-drought situations. We discuss the applicability of IBTs to the UK, highlighting an essential pre-condition is detailed research to understand a locality’s water consumers and their water demand.

Suggested Citation

  • Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:2:d:10.1007_s11269-018-2133-z
    DOI: 10.1007/s11269-018-2133-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2133-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2133-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferraro, Paul J. & Miranda, Juan José, 2013. "Heterogeneous treatment effects and mechanisms in information-based environmental policies: Evidence from a large-scale field experiment," Resource and Energy Economics, Elsevier, vol. 35(3), pages 356-379.
    2. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    3. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    4. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    5. Suárez-Varela, Marta & Martínez-Espiñeira, Roberto & González-Gómez, Francisco, 2015. "An analysis of the price escalation of non-linear water tariffs for domestic uses in Spain," Utilities Policy, Elsevier, vol. 34(C), pages 82-93.
    6. S. Gaudin, 2006. "Effect of price information on residential water demand," Applied Economics, Taylor & Francis Journals, vol. 38(4), pages 383-393.
    7. Severin Borenstein, 2012. "The Redistributional Impact of Nonlinear Electricity Pricing," American Economic Journal: Economic Policy, American Economic Association, vol. 4(3), pages 56-90, August.
    8. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    9. Baerenklau, Kenneth A. & Schwabe, Kurt & Dinar, Ariel, 2014. "Do Increasing Block Rate Water Budgets Reduce Residential Water Demand? A Case Study in Southern California," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170019, Agricultural and Applied Economics Association.
    10. John J. Boland & Dale Whittington, 1998. "The Political Economy of Increasing Block Tariffs for Water in Developing Countries," EEPSEA Special and Technical Paper sp199801t3, Economy and Environment Program for Southeast Asia (EEPSEA), revised Jan 1998.
    11. Darwin C. Hall, 2009. "Politically Feasible, Revenue Sufficient, And Economically Efficient Municipal Water Rates," Contemporary Economic Policy, Western Economic Association International, vol. 27(4), pages 539-554, October.
    12. Gilg, Andrew & Barr, Stewart, 2006. "Behavioural attitudes towards water saving? Evidence from a study of environmental actions," Ecological Economics, Elsevier, vol. 57(3), pages 400-414, May.
    13. H. Allen Klaiber & V. Kerry Smith & Michael Kaminsky & Aaron Strong, 2014. "Measuring Price Elasticities for Residential Water Demand with Limited Information," Land Economics, University of Wisconsin Press, vol. 90(1), pages 100-113.
    14. Shin, Jeong-Shik, 1985. "Perception of Price When Price Information Is Costly: Evidence from Residential Electricity Demand," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 591-598, November.
    15. Wichman, Casey J., 2014. "Perceived price in residential water demand: Evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 308-323.
    16. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    17. Serhat Asci & Tatiana Borisova & Michael Dukes, 2017. "Are price strategies effective in managing demand of high residential water users?," Applied Economics, Taylor & Francis Journals, vol. 49(1), pages 66-77, January.
    18. repec:ags:aare05:139341 is not listed on IDEAS
    19. Wichman, Casey J., 2017. "Information provision and consumer behavior: A natural experiment in billing frequency," Journal of Public Economics, Elsevier, vol. 152(C), pages 13-33.
    20. Avinash Dixit, 1992. "Investment and Hysteresis," Journal of Economic Perspectives, American Economic Association, vol. 6(1), pages 107-132, Winter.
    21. Hunt Allcott & Todd Rogers, 2014. "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation," American Economic Review, American Economic Association, vol. 104(10), pages 3003-3037, October.
    22. Mary E. Renwick & Sandra O. Archibald, 1998. "Demand Side Management Policies for Residential Water Use: Who Bears the Conservation Burden?," Land Economics, University of Wisconsin Press, vol. 74(3), pages 343-359.
    23. Paul J. Ferraro & Michael K. Price, 2013. "Using Nonpecuniary Strategies to Influence Behavior: Evidence from a Large-Scale Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 64-73, March.
    24. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    25. Michael L. Nieswiadomy & David J. Molina, 1989. "Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data," Land Economics, University of Wisconsin Press, vol. 65(3), pages 280-289.
    26. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    27. Paul J. Ferraro & Juan Jose Miranda & Michael K. Price, 2011. "The Persistence of Treatment Effects with Norm-Based Policy Instruments: Evidence from a Randomized Environmental Policy Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 318-322, May.
    28. Michael Grossman, 1993. "Policy Watch: Alcohol and Cigarette Taxes," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 211-222, Fall.
    29. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    30. Steven L. Puller & Jeremy West, 2013. "Efficient Retail Pricing in Electricity and Natural Gas Markets," American Economic Review, American Economic Association, vol. 103(3), pages 350-355, May.
    31. Maamar Sebri, 2014. "A meta-analysis of residential water demand studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 499-520, June.
    32. Brennan, Donna C., 2006. "The Efficiency And Equity Implications Of Perth’S Inclining Block Urban Water Tariffs," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 174095, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisabeth A. Shrimpton & Dexter Hunt & Chris D.F. Rogers, 2021. "Justice in (English) Water Infrastructure: A Systematic Review," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    2. Samara López-Ruiz & Nazaret Ibáñez-Rueda & Jorge Guardiola & Francisco González-Gómez, 2023. "Does the Ownership of Water Utilities Influence Water-Saving Advice Provided to Service Users? An Analysis of the Spanish Water Sector," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3299-3318, June.
    3. Ana Ferreira & Manuel Duarte Pinheiro & Jorge Brito & Ricardo Mateus & Vitor Sousa, 2023. "Water Intensity Indicators in the Global Retail Sector," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 219-234, January.
    4. Xiangwen Kong & Chengyan Yue & Eric Watkins & Mike Barnes & Yufeng Lai, 2023. "Investigating the Effectiveness of Irrigation Restriction Length on Water Use Behavior," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 251-268, January.
    5. Joseph,George & Ayling,Sophie Charlotte Emi & Miquel-Florensa,Pepita & Bejarano,Hernán D. & Cardona,Alejandra Quevedo, 2021. "Behavioral Insights in Infrastructure Sectors : A Survey," Policy Research Working Paper Series 9704, The World Bank.
    6. Daminato, Claudio & Diaz-Farina, Eugenio & Filippini, Massimo & Padrón-Fumero, Noemi, 2021. "The impact of smart meters on residential water consumption: Evidence from a natural experiment in the Canary Islands," Resource and Energy Economics, Elsevier, vol. 64(C).
    7. Brandli Stitzel & Cynthia L. Rogers, 2022. "Residential Water Demand Under Increasing Block Rate Structure: Conservation Conundrum?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 203-218, January.
    8. Mousumi Roy & Lassi Linnanen & Sankha Chakrabortty & Parimal Pal, 2019. "Developing a Closed-Loop Water Conservation System at Micro Level Through Circular Economy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4157-4170, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    2. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    3. Wichman, Casey J. & Taylor, Laura O. & von Haefen, Roger H., 2016. "Conservation policies: Who responds to price and who responds to prescription?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 114-134.
    4. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    5. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    6. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    7. Daniel A. Brent & Corey Lott & Michael Taylor & Joseph Cook & Kimberly Rollins & Shawn Stoddard, 2020. "What Causes Heterogeneous Responses to Social Comparison Messages for Water Conservation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(3), pages 503-537, November.
    8. Daniel A. Brent, 2016. "Estimating Water Demand Elasticity at the Intensive and Extensive Margin," Departmental Working Papers 2016-06, Department of Economics, Louisiana State University.
    9. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    10. Nathan DeMaagd & Michael J. Roberts, 2020. "Estimating water demand using price differences of wastewater services," Working Papers 2020-1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    11. Wichman, Casey J., 2014. "Perceived price in residential water demand: Evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 308-323.
    12. Smith, Steven M., 2022. "The effects of individualized water rates on use and equity," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    13. Wichman, Casey J., 2017. "Information provision and consumer behavior: A natural experiment in billing frequency," Journal of Public Economics, Elsevier, vol. 152(C), pages 13-33.
    14. Brandli Stitzel & Cynthia L. Rogers, 2022. "Residential Water Demand Under Increasing Block Rate Structure: Conservation Conundrum?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 203-218, January.
    15. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    16. María Á. García-Valiñas & Roberto Martínez-Espiñeira & Marta Suárez-Varela Maciá, 2021. "Price and Consumption Misperception Profiles: The Role of Information in the Residential Water Sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 821-857, December.
    17. Wang, Jingjing & Chermak, Janie M., 2021. "Is less always more? Conservation, efficiency and water education programs," Ecological Economics, Elsevier, vol. 184(C).
    18. Shyama Ratnasiri & Clevo Wilson & Wasantha Athukorala & Maria A. Garcia-Valiñas & Benno Torgler & Robert Gifford, 2018. "Effectiveness of two pricing structures on urban water use and conservation: a quasi-experimental investigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(3), pages 547-560, July.
    19. Oliver R. Browne & Ludovica Gazze & Michael Greenstone, 2021. "Do Conservation Policies Work? Evidence from Residential Water Use," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 2(1), pages 190-225.
    20. Wang, Xiangrui & Lee, Jukwan & Yan, Jia & Thompson, Gary D., 2018. "Testing the behavior of rationally inattentive consumers in a residential water market," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 344-359.

    More about this item

    Keywords

    Increasing block tariffs; Behavioural interventions; Water conservation;
    All these keywords.

    JEL classification:

    • D10 - Microeconomics - - Household Behavior - - - General
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:2:d:10.1007_s11269-018-2133-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.