IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v34y2017i05ns0217595917500208.html
   My bibliography  Save this article

Grain Price Forecasting Using a Hybrid Stochastic Method

Author

Listed:
  • Yu Zhao

    (Department of Industrial Engineering and Management, Peking University, Beijing 100871, P. R. China)

  • Xi Zhang

    (Department of Industrial Engineering and Management, Peking University, Beijing 100871, P. R. China)

  • Zhongshun Shi

    (Department of Industrial and Systems Engineering, University of Wisconsin Madison, Madison, WI 53706, USA)

  • Lei He

    (Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA)

Abstract

Grain price forecasting is significant for all market participants in managing risks and planning operations. However, precise forecasting of price series is difficult because of the inherent stochastic behavior of grain price. In this paper, a novel hybrid stochastic method for grain price forecasting is introduced. The proposed method combines decomposed stochastic time series processes with artificial neural networks. The initial parameters of the hybrid stochastic model are optimized by a random search using a genetic algorithm. The proposed method is finally validated in China’s national grain market and compared with several recent price forecasting models. Results indicate that the proposed hybrid stochastic method provides a satisfactory forecasting performance in grain price series.

Suggested Citation

  • Yu Zhao & Xi Zhang & Zhongshun Shi & Lei He, 2017. "Grain Price Forecasting Using a Hybrid Stochastic Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.
  • Handle: RePEc:wsi:apjorx:v:34:y:2017:i:05:n:s0217595917500208
    DOI: 10.1142/S0217595917500208
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595917500208
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595917500208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Xu & Si Zhang & Edward Huang & Chun-Hung Chen & Loo Hay Lee & Nurcin Celik, 2016. "MO2TOS: Multi-Fidelity Optimization with Ordinal Transformation and Optimal Sampling," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-26, June.
    2. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    3. Jorge M. S. Valente & José Fernando Gonçalves & Rui A. F. S. Alves, 2006. "A Hybrid Genetic Algorithm For The Early/Tardy Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 393-405.
    4. Ramsey, James B. & Zhang, Zhifeng, 1997. "The analysis of foreign exchange data using waveform dictionaries," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 341-372, December.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
    7. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    8. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    9. Michael S. Haigh & Matthew T. Holt, 2000. "Hedging Multiple Price Uncertainty in International Grain Trade," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 881-896.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    11. Bradshaw, Girard W. & Orden, David, 1990. "Granger Causality From The Exchange Rate To Agricultural Prices And Export Sales," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(1), pages 1-11, July.
    12. John W. Freebairn, 1975. "Forecasting For Australian Agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 19(3), pages 154-174, December.
    13. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    14. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    15. Bin Liu & Teqi Duan & Yongming Li, 2009. "One Improved Agent Genetic Algorithm — Ring-Like Agent Genetic Algorithm For Global Numerical Optimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(04), pages 479-502.
    16. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    17. Mishra, G. C. & Singh, A., 2013. "A Study on Forecasting Prices of Groundnut Oil in Delhi by Arima Methodology and Artificial Neural Networks," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(3), pages 1-10, September.
    18. Myer, Gordon L. & Yanagida, John F., 1984. "Combining Annual Econometric Forecasts With Quarterly Arima Froecasts: A Heuristic Approach," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 9(1), pages 1-7, July.
    19. Wen-Hsiang Wu & Yunqiang Yin & Shuenn-Ren Cheng & Peng-Hsiang Hsu & Chin-Chia Wu, 2014. "Genetic Algorithm for a Two-Agent Scheduling Problem with Truncated Learning Consideration," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(06), pages 1-23.
    20. Jie Xu & Edward Huang & Chun-Hung Chen & Loo Hay Lee, 2015. "Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-34.
    21. Wei Li & Ming J. Zuo & Ramin Moghaddass, 2011. "Optimal Design Of A Multi-State Weighted Series-Parallel System Using Physical Programming And Genetic Algorithms," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(04), pages 543-562.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    2. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    3. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
    5. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    6. Yuanrong Wang & Yinsen Miao & Alexander CY Wong & Nikita P Granger & Christian Michler, 2023. "Domain-adapted Learning and Interpretability: DRL for Gas Trading," Papers 2301.08359, arXiv.org, revised Sep 2023.
    7. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    8. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    9. Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
    10. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    11. repec:ipg:wpaper:2014-548 is not listed on IDEAS
    12. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    13. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    14. Xu, Kunliang & Niu, Hongli, 2022. "Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    17. repec:ipg:wpaper:2014-516 is not listed on IDEAS
    18. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    19. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
    21. Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2022. "Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data," Working Papers 202201, University of Pretoria, Department of Economics.
    22. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:34:y:2017:i:05:n:s0217595917500208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.